Hire the best
Jspecialists

Top 30 Jspecialists on 21 Apr 2019 on Toogit. Jspecialists on Toogit are highly skilled and talented. Hiring Jspecialists is quite affordable as compared to a full-time employee and you can save upto 50% in business cost by hiring Jspecialists. Hiring Jspecialists is 100% safe as the money is released to the Jspecialists only after you are 100% satisfied with the work.

Get Started

Explore Toogit’s top Jspecialists

 
 
 
SDE-II at an E-Commerce MNC, Ex-SSE at Snapdeal, Ex-Goldman Sachs
Chitransh Saurabh

SDE-II at an E-Commerce MNC, Ex-SSE at Snapdeal, Ex-Goldman Sachs  


JPA Java Core Java 
$6 /hr
India
Programmer Analyst Trainee
Surbhi Girdhani

Programmer Analyst Trainee  


JPA Java Java EE 
$5 /hr
India
Technology architect
Selvan Valavan

Technology architect  


JPA Java Java EE 
$2 /hr
United States
Software Engineer
Arka Bandyopadhyay

Software Engineer  


JPA Java Java EE 
$10 /hr
India
Assembler language Developer
Shashank Dewangan

Assembler language Developer  


JCL COBOL IBM DB2 Programming 
$7 /hr
India
Web Application Full-stack Developer
Vijay Ravalli

Web Application Full-stack Developer  


JPA JSP Java 
$14 /hr
India
Software Development
Electems

Software Development  


JPA JSP Java 
$13 /hr
India
senior software engineer
Vikas Kumar

senior software engineer  


JPA JSP Java 
$10 /hr
India
Senior Technical Analyst
Arockia

Senior Technical Analyst  


JCL COBOL IBM DB2 Programming 
$8 /hr
India
Full Stack Developer
Satish

Full Stack Developer  


JPA JSP Java 
$0 /hr
India
Java developer | Spring MVC | Spring Boot | REST APIs
Gaurav Pingale

Java developer | Spring MVC | Spring Boot | REST APIs  


JPA JSP Java 
$5 /hr
India
Sign-up
to view more profiles

Get Started
 

How it works

Post a job

Post a Job

List your project requirement with us. Anything you want to get developed or want to add to your business. Toogit connects you to Top freelancers around the world.

Hire

Hire

Invite and interview your preferred talent to get work done. Toogit Instant Connect helps you if you need your project started immediately.

Work

Work

Define Tasks, use Toogit's powerful project management tool, stay updated with real time activity logs

Payment

Pay

Review work, track working hours. Pay freelancers only if you are 100% satisfied with the work done.

Popular How-To's in J category


 
How to Set Up Command Aliases in Linux/Ubuntu/Debi...
Other - Software Development

Aliases are one of the most time-saving devices. An alias is a way to make a complicated command or set of commands simple. This is best demonstrated by an example.In web deve...

Read More
 
How to Remove Element from an Array: JavaScript
Web Development

Removing elements from a JavaScript array is a common programming paradigm that developers often run into. As with a lot of things JavaScript, this isn’t as simple as it probably s...

Read More
 
Best practices when making a Yii2 Extension
Web Development

What is the best way to create a extension for Yii2?How to register the extension with the application and how to organize views, controllers and models within the extension? ...

Read More

Reviews From Our Users

Articles Related To J


Optimization deals with selecting the simplest option among a number of possible choices that are feasible or do not violate constraints. Python is used to optimize parameters in a model to best fit data, increase profitability of a possible engineering style, or meet another form of objective which will be described mathematically with variables and equations.

 

pyOpt is a Python-based package for formulating and solving nonlinear constrained optimization problems in an efficient, reusable and portable manner. Python programming uses object-oriented concepts, such as class inheritance and operator overloading, to maintain a distinct separation between the problem formulation and the optimization approach used to solve the problem.

 

All optimisation downside solvers inherit from the Optimizer abstract category. The category attributes include the solver name (name), an optimizer kind symbol (category), and dictionaries that contain the solver setup parameters (options) and message output settings (informs). The class provides ways to check and alter default solver parameters (getOption, setOption), as well as a method that runs the solver for a given optimisation problem (solve).

 

Optimization solver

A number of constrained optimization solvers are designed to solve the general nonlinear optimization problem.

  1. PSQP: This optimizer is a preconditioned sequential quadratic programming algorithm. This optimizer implements a sequential quadratic programming method with a BFGS variable metric update.
  2. SLSQP: This optimizer is a sequential least squares programming algorithm. SLSQP uses the Han–Powell quasi-Newton method with a BFGS update of the B-matrix and an L1-test function in the step-length algorithm. The optimizer uses a slightly modified version of Lawson and Hanson’s NNLS nonlinear least-squares solver.
  3. CONMIN: This optimizer implements the method of feasible directions. CONMIN solves the nonlinear programming problem by moving from one feasible point to an improved one by choosing at each iteration a feasible direction and step size that improves the objective function.
  4. COBYLA: It is an implementation of Powell’s nonlinear derivative–free constrained optimization that uses a linear approximation approach. The algorithm is a sequential trust–region algorithm that employs linear approximations to the objective and constraint functions.
  5. SOLVOPT: SOLVOPT is a modified version of Shor’s r–algorithm with space dilation to find a local minimum of nonlinear and non–smooth problems.
  6. KSOPT: This code reformulates the constrained problem into an unconstrained one using a composite Kreisselmeier–Steinhauser objective function to create an envelope of the objective function and set of constraints. The envelope function is then optimized using a sequential unconstrained minimization technique.
  7. NSGA2: This optimizer is a non-dominating sorting genetic algorithm that solves non-convex and non-smooth single and multiobjective optimization problems.
  8. ALGENCAN: It solves the general non-linear constrained optimization problem without resorting to the use of matrix manipulations. It uses instead an Augmented Lagrangian approach which is able to solve extremely large problems with moderate computer time.
  9. FILTERSD: It use of a Ritz values approach Linear Constraint Problem solver. Second derivatives and storage of an approximate reduced Hessian matrix is avoided using a limited memory spectral gradient approach based on Ritz values.

 

To solve an optimization problem with pyOpt an optimizer must be initialized. The initialization of one or more optimizers is independent of the initialization of any number of optimization problems. To initialize SLSQP, which is an open-source, sequential least squares programming algorithm that comes as part of the pyOpt package, use:

>>> slsqp = pyOpt.SLSQP()

This initializes an instance of SLSQP with the default options. The setOption method can be used to change any optimizer specific option, for example the internal output flag of SLSQP:

>>> slsqp.setOption('IPRINT', -1)

Now Schittkowski’s constrained problem can be solved using SLSQP and for example, pyOpt’s automatic finite difference for the gradients:

>>> [fstr, xstr, inform] = slsqp(opt_prob,sens_type='FD')

By default, the solution information of an optimizer is also stored in the specific optimization problem. To output solution to the screen one can use:

>>> print opt_prob.solution(0)

 

Example:

The problem is taken from the set of nonlinear programming examples by Hock and Schittkowski and it is defined as

=======================================================================

      min            − x1x2x3

     x1,x2,x3

 

subjected to     x1 + 2x2 + 2x3 − 72 ≤ 0

                        − x1 − 2x2 − 2x3 ≤ 0

 

                        0 ≤ x1 ≤ 42

                        0 ≤ x2 ≤ 42

                        0 ≤ x3 ≤ 42

 

The optimum of this problem is at (x1∗ , x2∗ , x3* ) = (24, 12, 12), with an objective function value of f ∗ = −3456, and constraint values g (x∗ ) = (0, −72).

 

#======================================================================

# Standard Python modules

#======================================================================

import os, sys, time

import pdb

#======================================================================

# Extension modules

#======================================================================

#from pyOpt import *

from pyOpt import Optimization

from pyOpt import PSQP

from pyOpt import SLSQP

from pyOpt import CONMIN

from pyOpt import COBYLA

from pyOpt import SOLVOPT

from pyOpt import KSOPT

from pyOpt import NSGA2

from pyOpt import ALGENCAN

from pyOpt import FILTERSD

 

#======================================================================

def objfunc(x):

   

    f = -x[0]*x[1]*x[2]

    g = [0.0]*2

    g[0] = x[0] + 2.*x[1] + 2.*x[2] - 72.0

    g[1] = -x[0] - 2.*x[1] - 2.*x[2]

   

    fail = 0

    return f,g, fail  

 

#======================================================================

# Instantiate Optimization Problem

opt_prob = Optimization('Hock and Schittkowski Constrained Problem',objfunc)

opt_prob.addVar('x1','c',lower=0.0,upper=42.0,value=10.0)

opt_prob.addVar('x2','c',lower=0.0,upper=42.0,value=10.0)

opt_prob.addVar('x3','c',lower=0.0,upper=42.0,value=10.0)

opt_prob.addObj('f')

opt_prob.addCon('g1','i')

opt_prob.addCon('g2','i')

print opt_prob

 

# Instantiate Optimizer (PSQP) & Solve Problem

psqp = PSQP()

psqp.setOption('IPRINT',0)

psqp(opt_prob,sens_type='FD')

print opt_prob.solution(0)

 

# Instantiate Optimizer (SLSQP) & Solve Problem

slsqp = SLSQP()

slsqp.setOption('IPRINT',-1)

slsqp(opt_prob,sens_type='FD')

print opt_prob.solution(1)

 

# Instantiate Optimizer (CONMIN) & Solve Problem

conmin = CONMIN()

conmin.setOption('IPRINT',0)

conmin(opt_prob,sens_type='CS')

print opt_prob.solution(2)

 

# Instantiate Optimizer (COBYLA) & Solve Problem

cobyla = COBYLA()

cobyla.setOption('IPRINT',0)

cobyla(opt_prob)

print opt_prob.solution(3)

 

# Instantiate Optimizer (SOLVOPT) & Solve Problem

solvopt = SOLVOPT()

solvopt.setOption('iprint',-1)

solvopt(opt_prob,sens_type='FD')

print opt_prob.solution(4)

 

# Instantiate Optimizer (KSOPT) & Solve Problem

ksopt = KSOPT()

ksopt.setOption('IPRINT',0)

ksopt(opt_prob,sens_type='FD')

print opt_prob.solution(5)

 

# Instantiate Optimizer (NSGA2) & Solve Problem

nsga2 = NSGA2()

nsga2.setOption('PrintOut',0)

nsga2(opt_prob)

print opt_prob.solution(6)

 

# Instantiate Optimizer (ALGENCAN) & Solve Problem

algencan = ALGENCAN()

algencan.setOption('iprint',0)

algencan(opt_prob)

print opt_prob.solution(7)

 

# Instantiate Optimizer (FILTERSD) & Solve Problem

filtersd = FILTERSD()

filtersd.setOption('iprint',0)

filtersd(opt_prob)

print opt_prob.solution(8)

 

Solving non-linear global optimization problems could be tedious task sometimes. If the problem is not that complex then general purpose solvers could work. However, as the complexity of problem increases, general purpose global optimizers start to take time. That is when need to create your problem specific fast and direct global optimizer’s need arises.

 

We have an specialized team with PHD holders and coders to design and develop customized global optimizers. If you need help with one, please feel free to send your queries to us.

 

We first understand the problem and data by visualizing it. After that we create a solution to your needs.

 

Please do read to understand what a solver is and how it works - If you want to create your own simple solver. This is not exactly how every solver works, however, this will give you a pretty solid idea of what is a solver and how it is supposed to work.

Over the last year or so, programming languages have regularly been prefixed with a curious word: modern, Modern Java. But what exactly does modern mean when used in this way?

 

When someone talks about modern languages, they're really just talking about how refined, how advanced and how convenient a programming language is. This also means that the language is capable enough not just to solve problems of the present, but of the future as well. A long line of features like scalability, being cloud-ready, and supporting newer paradigms and architectures is expected of a "modern" programming language.

 

Today, in fact, java is the most used runtime platform on enterprise systems (more than 97% of desktops). But more than that, its virtual machine powers packages and custom business applications, and a wide array of mobile and other embedded platforms.

 

Currently, according to Oracle, more than 3 billion devices run Java in some form. Most major companies use Java for some of their functions and Java server applications are processing tens of millions of requests each day.

 

Why java is so popular?

One of the most important reasons why Java is so popular is the platform independence. Java is a concurrent, class-based, and object-oriented programming language. It was initially designed to have as few implementation dependencies as possible, which lead to the term "write once, run anywhere" (WORA). This means that compiled Java code can run on all platforms with no need for recompiling the code.

 

Java-based applications are known for their speed and scalability. Its efficient processing speeds are used in software, computer games, and mobile Apps. Java supports Multithreading. Multithreading means handling more than one job at a time, so get more process get done in less time than it could with just one thread. Java is also a statically typed language, so that it brings a much greater degree of safety and stability to its programs compared to other popular languages. This safety and stability is a necessity for companies who require major bandwidth in their software and apps.

 

Is Java worth learning?

Java is still a relevant programming language that shows no sign of declining in popularity. Most developers choose it up as their initial programming language because it's reasonably simple to learn.

 

Since the language has an English-like syntax with minimum special characters, Java could be learned in a very short time span and used to build appropriate applications. It is part of a family of languages that are heavily influenced by C++ (as well as C#), thus learning Java offers vast benefits when learning these alternative two languages.

 

"Developing programs is a kind of making art, once you learn clearly and spend your time with full involvement; the creation of art became so easy and simple."

 

General Advantages of Using Java for Business Applications:

Programming with Java is incredibly common for banking and web applications. Compared to other programming languages, Java definitely stands out in terms of security functionality and environment. It comes with certain built-in security features such as:

 

Java apps are able to manage their own use by multiple users at the same time, creating threads for each use within the program itself, rather than having to run multiple copies of the programming in the same hardware. Each thread is tracked until the "work" is finished.

 

Java is so versatile and provides robust customized solutions for almost any type of business need. This "referred position" shows no signs of declining, especially now that Java 10 is on the horizon. It just keeps getting better.

 

Advanced Authentication and Access Control that allows incorporating a range of secure login mechanisms, along with creating the custom security policy and enforce a well-defined permission access policy to sensitive data.

 

Cryptography

Advanced Authentication and Access Control that allows incorporating a range of secure login mechanisms, along with creating the custom security policy and enforce a well-defined permission access policy to sensitive data.

 

Java apps are able to manage their own use by multiple users at the same time, creating threads for each use within the program itself, rather than having to run multiple copies of the programming in the same hardware. Each thread is tracked until the "work" is finished.

 

Java is so versatile and provides robust customized solutions for almost any type of business need. This "referred position" shows no signs of declining, especially now that Java 10 is on the horizon. It just keeps getting better.

 

 

In almost every industry, customer service agentsact as intermediaries between companies and customers. They answer questions and resolve issues with a company's products or services, and they are often the only communication a customer has with a company.

 

To become a customer service representative, you need to be an excellent communicator. You should have the ability to converse with anyone since customer service representatives talk to multiple people throughout the day. There is no educational requirement needed to become a customer service representative, but a high school diploma and previous work experience are often preferred. Becoming a customer service representative is also a great entry-level job.

 

Customer service representatives typically need a high school diploma or equivalent and receive on-the-job training to learn the specific skills needed for the job. They should be good at communicating and interacting with people and have some experience using computers.

 

Customer service representatives usually receive short-term on-the-job training, typically lasting 2 to 3 weeks. Those who work in finance and insurance may need several months of training to learn complicated financial regulations.

 

General customer-service training may focus on procedures for answering questions, information about a company's products and services, and computer and telephone use. Trainees often work under the guidance of an experienced worker for the first few weeks of employment.

 

In certain industries, such as finance and insurance, customer service representatives must remain current with changing regulations.

 

Important Qualities for Customer Service Representatives

  1. Communication skills. Customer service representatives must be able to provide clear information in writing, by phone, or in person so that customers can understand them.
  2. Customer-service skills. Representatives help companies retain customers by answering their questions and responding to complaints in a helpful and professional manner.
  3. Interpersonal skills. Representatives should be able to create positive interactions with customers.
  4. Listening skills. Representatives must listen carefully and understand a customer's situation in order to assist them.
  5. Patience. Representatives should be patient and polite, especially when interacting with dissatisfied customers.
  6. Problem-solving skills. Representatives must determine solutions to a customer's problem. By resolving issues effectively, representatives contribute to customer loyalty and retention.

Articles Related To J


How to solve non-linear optimization problems in Python
How to solve non-linear optimization problems in P...
Other - Software Development

Optimization deals with selecting the simplest option among a number of possible choices that are feasible or do not violate constraints. Python is used to optimize parameters in a...

Read More
Use java's key to achieve success in development
Use java's key to achieve success in development
Desktop Software Development

Over the last year or so, programming languages have regularly been prefixed with a curious word: modern, Modern Java. But what exactly does modern mean when used in this way? ...

Read More
How to become a customer service representative
How to become a customer service representative
Customer Service

In almost every industry, customer service agentsact as intermediaries between companies and customers. They answer questions and resolve issues with a company's products or s...

Read More

Other Freelancers In Similar Categories

Himanshu Singh


I am a Certified Java Developer

Muppinesh S E


Web development

Gunvant Sarpate


Hello, I can make a professional website for you!

Jain Akash


update later

What our users are discussing about J