Deep Learning With Python

Develop Deep Learning Models on
Theano and TensorFlow Using
Keras

Jason Brownlee

MACHINE
LEARNING
MASTERY

4

Disclaimer

The information contained within this eBook is strictly for educational purposes. If you wish to apply
ideas contained in this eBook, you are taking full responsibility for your actions.

The author has made every effort to ensure the accuracy of the information within this book was
correct at time of publication. The author does not assume and hereby disclaims any liability to any
party for any loss, damage, or disruption caused by errors or omissions, whether such errors or
omissions result from accident, negligence, or any other cause.

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic or
mechanical, recording or by any information storage and retrieval system, without written permission
from the author.

Copyright
Deep Learning With Python
© Copyright 2018 Jason Brownlee. All Rights Reserved.

Edition: v1.14

This is Just a Sample

Thank-you for your interest in Deep Learning With Python.
This is just a sample of the full text. You can purchase the complete book online from:
https://machinelearningmastery.com/deep-learning-with-python/

Deep Learning With Python

Develop Deep Learning Models on
Theano and TensorFlow Using
Keras

a0 BrTion

MACHINE
I.EAI-'IFA.I}‘

i

https://machinelearningmastery.com/deep-learning-with-python/

Contents

Copyright i
1 Welcome 1
1.1 Deep Learning The Wrong Way 1
1.2 Deep Learning With Python 0. 2
1.3 Book Organization 2
1.4 Requirements For This Book L.)
1.5 Your Outcomes From Reading This Book 6
1.6 What This Bookis Not 7
L7 Summary 8
2 Develop Your First Neural Network With Keras 9
2.1 Tutorial Overview 9
2.2 Pima Indians Onset of Diabetes Dataset 10
2.3 Load Data 11
2.4 Define Model 11
2.5 Compile Model 13
2.6 Fit Model 13
2.7 Ewvaluate Model 13
2.8 Tie It All Together 14
2.9 Summary e 15

1l

Chapter 1

Welcome

Welcome to Deep Learning With Python. This book is your guide to deep learning in Python.
You will discover the Keras Python library for deep learning and how to use it to develop and
evaluate deep learning models. In this book you will discover the techniques, recipes and skills
in deep learning that you can then bring to your own machine learning projects.

Deep learning does have a lot of fascinating math under the covers, but you do not need
to know it to be able to pick it up as a tool and wield it on important projects and deliver
real value. From the applied perspective, deep learning is quite a shallow field and a motivated
developer can quickly pick it up and start making very real and impactful contributions. This is
my goal for you and this book is your ticket to that outcome.

1.1 Deep Learning The Wrong Way

If you ask a deep learning practitioner how to get started with neural networks and deep learning,
what do they say? They say things like

e You must have a strong foundation in linear algebra.

e You must have a deep knowledge of traditional neural network techniques.

You really must know about probability and statistics.

You should really have a deep knowledge of machine learning.

You probably need to be a PhD in computer science.

e You probably need 10 years of experience as a machine learning developer.

You can see that the “common sense” advice means that it is not until after you have
completed years of study and experience that you are ready to actually start developing and
evaluating machine learning model for your machine learning projects.

I think this advice is dead wrong.

1.2. Deep Learning With Python 2

1.2 Deep Learning With Python

The approach taken with this book and with all of Machine Learning Mastery is to flip the
traditional approach. If you are interested in deep learning, start by developing and evaluating
deep learning models. Then if you discover you really like it or have a knack for it, later you
can step deeper and deeper into the background and theory, as you need it in order to serve
you in developing better and more valuable results. This book is your ticket to jumping in and
making a ruckus with deep learning.

I have used many of the top deep learning platforms and libraries and I chose what I think
is the best-of-breed platform for getting started and very quickly developing powerful and even
state-of-the-art deep learning models in the Keras deep learning library for Python. Unlike R,
Python is a fully featured programming language allowing you to use the same libraries and
code for model development as you can use in production. Unlike Java, Python has the SciPy
stack for scientific computing and scikit-learn which is a professional grade machine library.

There are two top numerical platforms for developing deep learning models, they are Theano
developed by the University of Montreal and TensorFlow developed at Google. Both were
developed for use in Python and both can be leveraged by the super simple to use Keras library.
Keras wraps the numerical computing complexity of Theano and TensorFlow providing a concise
API that we will use to develop our own neural network and deep learning models.

You will develop your own and perhaps your first neural network and deep learning models
while working through this book, and you will have the skills to bring this amazing new
technology to your own projects. It is going to be a fun journey and I can’t wait to start.

1.3 Book Organization
This book is broken down into three parts.

e Lessons where you learn about specific features of neural network models and how to use
specific aspects of the Keras API.

e Projects where you will pull together multiple lessons into an end-to-end project and
deliver a result, providing a template for your own projects.

e Recipes where you can copy and paste the standalone code into your own project,

including all of the code presented in this book.

1.3.1 Lessons and Projects

Lessons are discrete and are focused on one topic, designed for you to complete in one sitting.
You can take as long as you need, from 20 minutes if you are racing through, to hours if you
want to experiment with the code or ideas and improve upon the presented results. Your lessons
are divided into five parts:

e Background.
e Multilayer Perceptrons.

e Advanced Multilayer Perceptrons and Keras.

1.3. Book Organization 3

e Convolutional Neural Networks.

e Recurrent Neural Networks.

1.3.2 Part 2: Background

In this part you will learn about the Theano, TensorFlow and Keras libraries that lay the
foundation for your deep learning journey and about how you can leverage very cheap Amazon
Web Service computing in order to develop and evaluate your own large models in the cloud.
This part of the book includes the following lessons:

e Introduction to the Theano Numerical Library.
e Introduction to the TensorFlow Numerical Library.

e Introduction to the Keras Deep Learning Library.

The lessons will introduce you to the important foundational libraries that you need to
install and use on your workstation. This is taken one step further in a project that shows how
you can cheaply harness GPU cloud computing to develop and evaluate very large deep learning
models.

e Project: Develop Large Models on GPUs Cheaply In the Cloud.

At the end of this part you will be ready to start developing models in Keras on your
workstation or in the cloud.

1.3.3 Part 3: Multilayer Perceptrons

In this part you will learn about feedforward neural networks that may be deep or not and how
to expertly develop your own networks and evaluate them efficiently using Keras. This part of
the book includes the following lessons:

e Crash Course In Multilayer Perceptrons.

e Develop Your First Neural Network With Keras.

e Evaluate The Performance of Deep Learning Models.

e Use Keras Models With Scikit-Learn For General Machine Learning.

These important lessons are tied together with three foundation projects. These projects
demonstrate how you can quickly and efficiently develop neural network models for tabular
data and provide project templates that you can use on your own regression and classification
machine learning problems. These projects include:

e Project: Multiclass Classification Problem.
e Project: Binary Classification Problem.
e Project: Regression Problem.

At the end of this part you will be ready to discover the finer points of deep learning using
the Keras API.

1.3. Book Organization 4

1.3.4 Part 4: Advanced Multilayer Perceptrons

In this part you will learn about some of the more finer points of the Keras library and API for
practical machine learning projects and some of the more important developments in applied
neural networks that you need to know in order to deliver world class results. This part of the
book includes the following lessons:

e Save Your Models For Later With Network Serialization.

Keep The Best Models During Training With Checkpointing.

Understand Model Behavior During Training By Plotting History.

Reduce Overfitting With Dropout Regularization.

Lift Performance With Learning Rate Schedules.

At the end of this part you will know how to confidently wield Keras on your own machine
learning projects with a focus on the finer points of investigating model performance, persisting
models for later use and gaining lifts in performance over baseline models.

1.3.5 Part 5: Convolutional Neural Networks

In this part you will receive a crash course in the dominant model for computer vision machine
learning problems and some natural language problems and how you can best exploit the
capabilities of the Keras API for your own projects. This part of the book includes the following
lessons:

e Crash Course In Convolutional Neural Networks.

e Improve Model Performance With Image Augmentation.

The best way to learn about this impressive type of neural network model is to apply it.
You will work through three larger projects and apply CNN to image data for object recognition
and text data for sentiment classification.

e Project: Handwritten Digit Recognition.
e Project: Object Recognition in Photographs.

e Project: Movie Review Sentiment Classification.

After completing the lessons and projects in this part you will have the skills and the
confidence of complete and working templates and recipes to tackle your own deep learning
projects using convolutional neural networks.

1.4. Requirements For This Book)

1.3.6 Part 6: Recurrent Neural Networks

In this part you will receive a crash course in the dominant model for data with a sequence or
time component and how you can best exploit the capabilities of the Keras API for your own
projects. This part of the book includes the following lessons:

e Crash Course In Recurrent Neural Networks.

Multilayer Perceptron Models for Time Series Problems.

LSTM Models for Time Series Problems.

Understanding State in LSTM Models for Sequence Prediction.

The best way to learn about this complex type of neural network model is to apply it.
You will work through two larger projects and apply RNN to sequence classification and text
generation.

e Project: Sequence Classification of Movie Reviews.

e Project: Text Generation With Alice in Wonderland.

After completing the lessons and projects in this part you will have the skills and the
confidence of complete and working templates and recipes to tackle your own deep learning
projects using recurrent neural networks.

1.3.7 Conclusions

The book concludes with some resources that you can use to learn more information about a
specific topic or find help if you need it as you start to develop and evaluate your own deep
learning models.

1.3.8 Recipes

Building up a catalog of code recipes is an important part of your deep learning journey. Each
time you learn about a new technique or new problem type, you should write up a short code
recipe that demonstrates it. This will give you a starting point to use on your next deep learning
or machine learning project.

As part of this book you will receive a catalog of deep learning recipes. This includes recipes
for all of the lessons presented in this book, as well as the complete code for all of the projects.
You are strongly encouraged to add to and build upon this catalog of recipes as you expand
your use and knowledge of deep learning in Python.

1.4 Requirements For This Book

1.4.1 Python and SciPy

You do not need to be a Python expert, but it would be helpful if you knew how to install and
setup Python and SciPy. The lessons and projects assume that you have a Python and SciPy

1.5. Your Outcomes From Reading This Book 6

environment available. This may be on your workstation or laptop, it may be in a VM or a
Docker instance that you run, or it may be a server instance that you can configure in the cloud
as taught in Part II of this book.

Technical Requirements: The technical requirements for the code and tutorials in this
book are as follows:

e Python version 2 or 3 installed. This book was developed using Python version 2.7.11 and
3.5.3.

SciPy and NumPy installed. This book was developed with SciPy version 0.19.0 and
NumPy version 1.12.1.

Matplotlib installed. This book was developed with Matplotlib version 2.0.0.

Pandas installed. This book was developed with Pandas version 0.19.2.

scikit-learn installed. This book was developed with scikit-learn 0.18.1.

You do not need to match the version exactly, but if you are having problems running a
specific code example, please ensure that you update to the same or higher version as the library
specified. You will be guided as to how to install the deep learning libraries Theano, TensorFlow
and Keras in Part II of the book.

1.4.2 Machine Learning

You do not need to be a machine learning expert, but it would be helpful if you knew how to
navigate a small machine learning problem using scikit-learn. Basic concepts like cross-validation
and one hot encoding used in lessons and projects are described, but only briefly. There are
resources to go into these topics in more detail at the end of the book, but some knowledge of
these areas might make things easier for you.

1.4.3 Deep Learning

You do not need to know the math and theory of deep learning algorithms, but it would be
helpful to have some basic idea of the field. You will get a crash course in neural network
terminology and models, but we will not go into much detail. Again, there will be resources for
more information at the end of the book, but it might be helpful if you can start with some
idea about neural networks.

Note: All tutorials can be completed on standard workstation hardware with a CPU. A
GPU is not required. Some tutorials later in the book can be speed up significantly by running
on the GPU and a suggestion is provided to consider using GPU hardware at the beginning of
those sections. You can access GPU hardware easily and cheaply in the cloud and a step-by-step
procedure is taught on how to do this in Chapter ?77?.

1.5 Your Outcomes From Reading This Book

This book will lead you from being a developer who is interested in deep learning with Python
to a developer who has the resources and capabilities to work through a new dataset end-to-end
using Python and develop accurate deep learning models. Specifically, you will know:

1.6. What This Book is Not 7

How to develop and evaluate neural network models end-to-end.

How to use more advanced techniques required for developing state-of-the-art deep learning
models.

How to build larger models for image and text data.

How to use advanced image augmentation techniques in order to lift model performance.

How to get help with deep learning in Python.

From here you can start to dive into the specifics of the functions, techniques and algorithms
used with the goal of learning how to use them better in order to deliver more accurate predictive
models, more reliably in less time. There are a few ways you can read this book. You can dip
into the lessons and projects as your need or interests motivate you. Alternatively, you can
work through the book end-to-end and take advantage of how the lessons and projects build in
complexity and range. I recommend the latter approach.

To get the very most from this book, I recommend taking each lesson and project and build
upon them. Attempt to improve the results, apply the method to a similar but different problem,
and so on. Write up what you tried or learned and share it on your blog, social media or send
me an email at jason@MachineLearningMastery.com. This book is really what you make of it
and by putting in a little extra, you can quickly become a true force in applied deep learning.

1.6 What This Book is Not

This book solves a specific problem of getting you, a developer, up to speed applying deep
learning to your own machine learning projects in Python. As such, this book was not intended
to be everything to everyone and it is very important to calibrate your expectations. Specifically:

e This is not a deep learning textbook. We will not be getting into the basic theory
of artificial neural networks or deep learning algorithms. You are also expected to have
some familiarity with machine learning basics, or be able to pick them up yourself.

e This is not an algorithm book. We will not be working through the details of how
specific deep learning algorithms work. You are expected to have some basic knowledge of
deep learning algorithms or how to pick up this knowledge yourself.

e This is not a Python programming book. We will not be spending a lot of time on
Python syntax and programming (e.g. basic programming tasks in Python). You are
expected to already be familiar with Python or a developer who can pick up a new C-like
language relatively quickly.

You can still get a lot out of this book if you are weak in one or two of these areas, but you
may struggle picking up the language or require some more explanation of the techniques. If
this is the case, see the Getting More Help chapter at the end of the book and seek out a good
companion reference text.

1.7. Summary 8

1.7 Summary

It is a special time right now. The tools for applied deep learning have never been so good.
The pace of change with neural networks and deep learning feels like it has never been so fast,
spurred by the amazing results that the methods are showing in such a broad range of fields.
This is the start of your journey into deep learning and I am excited for you. Take your time,
have fun and I'm so excited to see where you can take this amazing new technology.

1.7.1 Next

Let’s dive in. Next up is Part IT where you will take a whirlwind tour of the foundation libraries
for deep learning in Python, namely the numerical libraries Theano and TensorFlow and the
library you will be using throughout this book called Keras.

Chapter 2

Develop Your First Neural Network
With Keras

Keras is a powerful and easy-to-use Python library for developing and evaluating deep learning
models. It wraps the efficient numerical computation libraries Theano and TensorFlow and
allows you to define and train neural network models in a few short lines of code. In this lesson
you will discover how to create your first neural network model in Python using Keras. After
completing this lesson you will know:

e How to load a CSV dataset ready for use with Keras.
e How to define and compile a Multilayer Perceptron model in Keras.

e How to evaluate a Keras model on a validation dataset.

Let’s get started.

2.1 Tutorial Overview

There is not a lot of code required, but we are going to step over it slowly so that you will know
how to create your own models in the future. The steps you are going to cover in this tutorial
are as follows:

1. Load Data.

2. Define Model.

3. Compile Model.

4. Fit Model.

5. Evaluate Model.

6. Tie It All Together.

2.2. Pima Indians Ounset of Diabetes Dataset 10

2.2 Pima Indians Onset of Diabetes Dataset

In this tutorial we are going to use the Pima Indians onset of diabetes dataset. This is a
standard machine learning dataset available for free download from the UCI Machine Learning
repository. It describes patient medical record data for Pima Indians and whether they had an
onset of diabetes within five years. It is a binary classification problem (onset of diabetes as 1
or not as 0). The input variables that describe each patient are numerical and have varying
scales. Below lists the eight attributes for the dataset:

1. Number of times pregnant.

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test.
3. Diastolic blood pressure (mm Hg).

4. Triceps skin fold thickness (mm).

5. 2-Hour serum insulin (mu U/ml).

6. Body mass index.

7. Diabetes pedigree function.

8. Age (years).

9. Class, onset of diabetes within five years.

Given that all attributes are numerical makes it easy to use directly with neural networks
that expect numerical inputs and output values, and ideal for our first neural network in Keras.
This dataset will also be used for a number of additional lessons coming up in this book, so
keep it handy. Below is a sample of the dataset showing the first 5 rows of the 768 instances:

6,148,72,35,0,33.6,0.627,50,1
1,85,66,29,0,26.6,0.351,31,0
8,183,64,0,0,23.3,0.672,32,1
1,89,66,23,94,28.1,0.167,21,0
0,137,40,35,168,43.1,2.288,33,1

Listing 2.1: Sample of the Pima Indians Dataset.

The dataset file is available in your bundle of code recipes provided with this book. Alterna-
tively, you can download the Pima Indian dataset from the UCI Machine Learning repository
and place it in your local working directory, the same as your Python file!. Save it with the file
name:

pima-indians-diabetes.csv

Listing 2.2: Pima Indians Dataset File.

lhttps://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.
csv

https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv

2.3. Load Data 11

The baseline accuracy if all predictions are made as no onset of diabetes is 65.1%. Top
results on the dataset are in the range of 77.7% accuracy using 10-fold cross-validation®. You
can learn more about the dataset on the dataset home page on the UCI Machine Learning
Repository?.

2.3 Load Data

Whenever we work with machine learning algorithms that use a stochastic process (e.g. random
numbers), it is a good idea to initialize the random number generator with a fixed seed value.
This is so that you can run the same code again and again and get the same result. This is useful
if you need to demonstrate a result, compare algorithms using the same source of randomness
or to debug a part of your code. You can initialize the random number generator with any seed
you like, for example:

from keras.models import Sequential
from keras.layers import Dense

import numpy

fix random seed for reproducibility
numpy . random. seed (7)

Listing 2.3: Load Libraries and Seed Random Number Generator.

Now we can load our Pima Indians dataset. You can now load the file directly using the
NumPy function loadtxt (). There are eight input variables and one output variable (the last
column). Once loaded we can split the dataset into input variables (X) and the output class
variable (V).

load pima indians dataset

dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
split into input and output variables

X = dataset[:,0:8]

Y = dataset[:,8]

Listing 2.4: Load The Dataset Using NumPy.

We have initialized our random number generator to ensure our results are reproducible and
loaded our data. We are now ready to define our neural network model.

2.4 Define Model

Models in Keras are defined as a sequence of layers. We create a Sequential model and add
layers one at a time until we are happy with our network topology. The first thing to get right
is to ensure the input layer has the right number of inputs. This can be specified when creating
the first layer with the input_dim argument and setting it to 8 for the 8 input variables.

How do we know the number of layers to use and their types? This is a very hard question.
There are heuristics that we can use and often the best network structure is found through
a process of trial and error experimentation. Generally, you need a network large enough

2http://www.is.umk.pl/projects/datasets.html#Diabetes
3http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

http://www.is.umk.pl/projects/datasets.html#Diabetes
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

2.4. Define Model 12

to capture the structure of the problem if that helps at all. In this example we will use a
fully-connected network structure with three layers.

Fully connected layers are defined using the Dense class. We can specify the number
of neurons in the layer as the first argument and specify the activation function using the
activation argument. We will use the rectifier (relu) activation function on the first two layers
and the sigmoid activation function in the output layer. It used to be the case that sigmoid
and tanh activation functions were preferred for all layers. These days, better performance is
seen using the rectifier activation function. We use a sigmoid activation function on the output
layer to ensure our network output is between 0 and 1 and easy to map to either a probability
of class 1 or snap to a hard classification of either class with a default threshold of 0.5. We can
piece it all together by adding each layer. The first hidden layer has 12 neurons and expects
8 input variables (e.g. input_dim=8). The second hidden layer has 8 neurons and finally the
output layer has 1 neuron to predict the class (onset of diabetes or not).

create model

model = Sequential()

model .add (Dense (12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))

model.add (Dense(1, activation='sigmoid'))

Listing 2.5: Define the Neural Network Model in Keras.

The figure below provides a depiction of the network structure.

Output Layer
(1 output)

Hidden Layer
(8 neurons)

Hidden Layer
{12 neurons)

Visible Layer
(8 inputs)

Figure 2.1: Visualization of Neural Network Structure.

2.5. Compile Model 13

2.5 Compile Model

Now that the model is defined, we can compile it. Compiling the model uses the efficient
numerical libraries under the covers (the so-called backend) such as Theano or TensorFlow.
The backend automatically chooses the best way to represent the network for training and
making predictions to run on your hardware. When compiling, we must specify some additional
properties required when training the network. Remember training a network means finding the
best set of weights to make predictions for this problem.

We must specify the loss function to use to evaluate a set of weights, the optimizer used
to search through different weights for the network and any optional metrics we would like
to collect and report during training. In this case we will use logarithmic loss, which for a
binary classification problem is defined in Keras as binary_crossentropy. We will also use the
efficient gradient descent algorithm adam for no other reason that it is an efficient default. Learn
more about the Adam optimization algorithm in the paper Adam: A Method for Stochastic
Optimization®. Finally, because it is a classification problem, we will collect and report the
classification accuracy as the metric.

Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Listing 2.6: Compile the Neural Network Model.

2.6 Fit Model

We have defined our model and compiled it ready for efficient computation. Now it is time to
execute the model on some data. We can train or fit our model on our loaded data by calling
the £fit () function on the model.

The training process will run for a fixed number of iterations through the dataset called
epochs, that we must specify using the epochs argument. We can also set the number of
instances that are evaluated before a weight update in the network is performed called the
batch size and set using the batch size argument. For this problem we will run for a small
number of epochs (150) and use a relatively small batch size of 10. Again, these can be chosen
experimentally by trial and error.

Fit the model
model.fit(X, Y, epochs=150, batch_size=10)

Listing 2.7: Fit the Neural Network Model to the Dataset.

This is where the work happens on your CPU or GPU.

2.7 Evaluate Model

We have trained our neural network on the entire dataset and we can evaluate the performance
of the network on the same dataset. This will only give us an idea of how well we have modeled
the dataset (e.g. train accuracy), but no idea of how well the algorithm might perform on new

“http://arxiv.org/abs/1412.6980

http://arxiv.org/abs/1412.6980

2.8. Tie It All Together 14

data. We have done this for simplicity, but ideally, you could separate your data into train and
test datasets for the training and evaluation of your model.

You can evaluate your model on your training dataset using the evaluation() function on
your model and pass it the same input and output used to train the model. This will generate a
prediction for each input and output pair and collect scores, including the average loss and any
metrics you have configured, such as accuracy.

evaluate the model
scores = model.evaluate(X, Y)
print ("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

Listing 2.8: Evaluate the Neural Network Model on the Dataset.

2.8 Tie It All Together

You have just seen how you can easily create your first neural network model in Keras. Let’s tie
it all together into a complete code example.

Create your first MLP in Keras

from keras.models import Sequential

from keras.layers import Dense

import numpy

fix random seed for reproducibility

numpy . random. seed (7)

load pima indians dataset

dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
split into input (X) and output (Y) variables

X = dataset[:,0:8]

Y = dataset[:,8]

create model

model = Sequential()

model.add (Dense (12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))

model.add (Dense(1, activation='sigmoid'))

Compile model

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
Fit the model

model.fit (X, Y, epochs=150, batch_size=10)

evaluate the model

scores = model.evaluate(X, Y)

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

Listing 2.9: Complete Working Example of Your First Neural Network in Keras.

Running this example, you should see a message for each of the 150 epochs printing the loss
and accuracy for each, followed by the final evaluation of the trained model on the training
dataset. It takes about 10 seconds to execute on my workstation running on the CPU with a
Theano backend.

Epoch 145/150
768/768 [] - 0s - loss: 0.5105 - acc: 0.7396
Epoch 146/150
768/768 [] - 0s - loss: 0.4900 - acc: 0.7591

2.9. Summary 15

Epoch 147/150

768/768 [] - 0Os - loss: 0.4939 - acc: 0.7565
Epoch 148/150

768/768 [] - 0s - loss: 0.4766 - acc: 0.7773
Epoch 149/150

768/768 [] - 0s - loss: 0.4883 - acc: 0.7591
Epoch 150/150

768/768 [] - 0Os - loss: 0.4827 - acc: 0.7656
32/768 [>. it e e] - ETA: Os

acc: 78.26%

Listing 2.10: Output of Running Your First Neural Network in Keras.

2.9 Summary

In this lesson you discovered how to create your first neural network model using the powerful
Keras Python library for deep learning. Specifically you learned the five key steps in using
Keras to create a neural network or deep learning model, step-by-step including;:

e How to load data.

How to define a neural network model in Keras.

How to compile a Keras model using the efficient numerical backend.

How to train a model on data.

How to evaluate a model on data.

2.9.1 Next

You now know how to develop a Multilayer Perceptron model in Keras. In the next section you
will discover different ways that you can evaluate your models and estimate their performance
on unseen data.

This is Just a Sample

Thank-you for your interest in Deep Learning With Python.
This is just a sample of the full text. You can purchase the complete book online from:
https://machinelearningmastery.com/deep-learning-with-python/

Deep Learning With Python

Develop Deep Learning Models on
Theano and TensorFlow Using
Keras

a0 BrTion

MACHINE
I.EAI-'IFA.I}‘

16

https://machinelearningmastery.com/deep-learning-with-python/

	Copyright
	Welcome
	Deep Learning The Wrong Way
	Deep Learning With Python
	Book Organization
	Requirements For This Book
	Your Outcomes From Reading This Book
	What This Book is Not
	Summary

	Develop Your First Neural Network With Keras
	Tutorial Overview
	Pima Indians Onset of Diabetes Dataset
	Load Data
	Define Model
	Compile Model
	Fit Model
	Evaluate Model
	Tie It All Together
	Summary

