
Numerical Solutions of (1+1)-Dimensional
Di�usion Equation via Lucas and Fibonacci

Polynomials

Kumail Raza

Supervised By: Dr. Abdul Ghafoor

Institute of Numerical Sciences
Kohat University of Science and Technology (KUST)

Kohat KPK Pakistan

November 11, 2022 1 / 36



Outlines

1 Motivation
2 Introduction to numerical methods
3 Lucas and Fibonacci polynomials
4 Proposed methodology for (1+1)-dimensional di�usion equation
5 Test problems
6 Conclusion

2 / 36



Motivation

Most of the physical problems can be modelled using partial
di�erential equations (PDEs).

When a PDE is non-linear then analytical solution is not always
possible so that's why numerical method is a good way for the
solution of those PDE's.

In literature the �nite di�erence method is a good way to use for the
solution of PDE's.

Our proposed scheme is concerned to solve (1+1)-dimensional
di�usion equation via Lucas and Fibonacci polynomials together with
�nite di�erence scheme.
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Introduction to Numerical Methods

In numerical methods, Euler used �nite di�erence method FDM in
1768 [1]. But did not gain much attention until the beginning of 20th

century. FDM are e�cient in case of regular domain but it lacked the
feasibility incase of irregular domain.

To overcome this di�culty, �nite element method FEM and �nite
volume method FVM were introduced that have great �exibility to
deal problems having complex geometry. Mesh generation in FEM is
pain staking process.

Recently people are using polynomial based approximation.

[1] W.F. Ames, Academic Press, Orlando, 1977.
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Introduction to Numerical Methods

In 2017, Ömer Oruc studied a numerical solution of generalized
Benjamin Bona Mahony Burger's equation by using polynomials . [2]

Nowadays people are using hybridized scheme in which �nite
di�erences are used for the temporal part while for space discretization
di�erent kind of polynomials are used.

In our work we used Lucas and Fibonacci polynomials for the space
discretization and forward di�erence is for temporal discretization.

After this the PDE with collocation approach is converted into system
of algebric equations which are easily solvable.

[2] Ömer Oruc, A new algorithm based on Lucas polynomials for approximate solution of 1D and 2D nonlinear
generalized Benjamin-Bona-Mahony-Burgers equation, 2017.
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Fibonacci Polynomials

The Fibonacci polynomials are de�ned as

Fn(x) =


0, if n = 0

1, if n = 1

xFn−1(x) + Fn−2(x), if n ≥ 2

(1)

The �rst few Fibonacci polynomials can be calculated as:

F0(x) = 0,

F1(x) = 1,

F2(x) = x,

F3(x) = x2 + 1,

F4(x) = x3 + 2x.

By evaluating Fibonacci polynomials at x = 1 the Fibonacci numbers can
be obtained. These Fibonacci numbers are 1, 1, 2, 3, 5, 8, . . . etc.
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Function approximation with Fibonacci polynomials

Suppose that a function u(x) is continuous and can be expanded into
Fibonacci polynomials as

u(x) =

∞∑
n=0

anFn(x). (2)

In practice, a truncated version of the above expansion is needed. So, Eq.
(1) can be written in truncated form as follows:

u(x) ∼=
N∑

n=0

anFn(x) = F (x)A, (3)

where F (x) = [F0(x), F1(x), ...., FN (x)] and A = [a0, a1, ..., an]
T .

There is a relation between the vector F (x) and its derivative vector F ′(x)
as,
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F ′(x) = F (x)D, (4)

where

D =


0 0 · · · 0
0
... d
0


(N+1)×(N+1)

and d is N ×N matrix which is given in [3]

di,j =

{
i sin (j−i)π

2 , j > i,

0, j ≤ i.
(5)

[3] A.B.Koç, M.Çakmak, A.Kurnaz, K.Uslu, A new Fibonacci type collocation procedure for boundary value
problems, 2013.
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For example if we take N = 3 then we have

D=


0 0 0 0
0 0 1 0
0 0 0 2
0 0 0 0

 .
By plugging the calculated value of D in Eq.(4) we obtain

F ′(x) = F (x)D = [0, 1, x, x2 + 1]


0 0 0 0
0 0 1 0
0 0 0 2
0 0 0 0

 = [0, 0, 1, 2x]. (6)

Now taking k-th derivative , Eq.(4) reduces to

9 / 36



F ′′(x) = F ′(x)D = F (x)D2

,
F ′′′(x) = F ′′(x)D = F (x)D3,

...
...

F (k)(x) = F (x)Dk.
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Lucas Polynomials

Lucas polynomials are de�ned as:

Ln(x) =


2, if n = 0

x, if n = 1

xLn−1(x) + Ln−2(x), if n ≥ 2.

(7)

From Eq.(7), the �rst few Lucas polynomials can be found as,

L0(x) = 2,

L1(x) = x,

L2(x) = x2 + 2,

L3(x) = x3 + 3x,

L4(x) = x4 + 4x2 + 2.

By letting x = 1 in the Lucas polynomials the Lucas numbers are obtained.
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Function approximation with Lucas Polynomials

Let u(x) be a continuous function and can be expressed in terms of Lucas
polynomials as,

u(x) =

∞∑
n=0

anLn(x). (8)

The above series expansion of u(x) contains in�nite terms. If this expansion
terminated at N �nite terms, Eq. (8) takes following terminated form,

u(x) ∼=
N∑

n=0

anLn(x) = L(x)A, (9)

where L(x) = [L0(x), L1(x), ...., LN (x)] and A = [a0, a1, ..., an]
T .

The derivative of Eqs.(8)-(9) can be written as:
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u(k)(x) =

∞∑
n=0

anL
(k)
n (x). (10)

u(k)(x) ∼=
N∑

n=0

anL
(k)
n (x) = L(k)(x)A, k = 0, 1, ...,m, (11)

in which
L(k)(x) = [L

(k)
0 (x), L

(k)
1 (x), ..., L

(k)
N (x)]

.
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Proposed Methodology for (1+1)-Dimensional Di�usion
Equation

Here we discuss the proposed scheme for (1+1)-dimensional di�usion
equation. First we use forward di�erence for temporal part with θ-weighted
(0 ≤ θ ≤ 1) scheme and then Lucas and Fibonacci Polynomial for space
discretization. Firstly using forward di�erence with θ-weighted scheme.

un+1 − un

τ
= θ[α2un+1

xx ] + (1− θ)α2unxx. (12)

Now further simpli�cation of Eq. (12) leads to :

un+1 − τθα2un+1
xx = un + τ(1− θ)α2unxx. (13)
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Next we approximate the solution at (n+ 1)-time level by Lucas
polynomials as :

un+1 ∼=
N∑

n=0

cn+1
n Ln(x) = L(x)C, (14)

where L(x) = [L0(x), L1(x), ...., LN (x)] and C = [a0, a1, ...., an]
T .

We can obtain higher derivatives of un+1 in terms of Lucas and Fibonacci
polynomials by taking derivatives of Eq. (14) with respect to x as follows:

un+1
x

∼=
N∑

n=0

cn+1
n L′

n(x) = nF (x)C, (15)

un+1
xx

∼=
N∑

n=0

cn+1
n L′′

n(x) = n(F (x)D)C, (16)
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where F (x) = [F0(x), F1(x), ...., FN (x)] and un+1 = u(x, tn+1).
The method is based on collocation approach so we use the following
collocation points :

xr = a+
b− a

N
(r − 1), r = 1, 2, ..., N + 1, a ≤ xr ≤ b.

Using the boundary points in Eq. (14), we get :

u(a, tn+1) =

N∑
n=0

cn+1
n Ln(a) = ψa(tn+1),

u(b, tn+1) =

N∑
n=0

cn+1
n Ln(b) = ψb(tn+1), n = 0, 1, ...,M − 1.

(17)
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Plugging Eqs. (14)-(16) into Eq. (13) and discretizing x→ xr, a full
discrete system of equations obtained as follows

N∑
n=0

cn+1
n Ln(xr)− τθα2(

N∑
n=0

cn+1
n L′′

n(xr)) = un + τ(1− θ)α2unxx.

Also writing derivative expressions from Eq. (14) and Eq. (16) , we get
above equation as :

[L(xr)− τθα2n(F (xrD)]C = un + τ(1− θ)α2unxx. (18)

So Eq. (18) in compact form can be written as

ΩC = Θ,
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where Θ = un + τ(1− θ)α2unxx is a column vector that is calculated at
every time step at xr , Ω is (N + 1)× (N + 1) matrix given as
Ω = L(xr)− τθα2n(F (xr)D) and C is (N + 1)× 1 unknown coe�cient
vector. The Eq. (18) contains (N + 1) unknowns which needs to be
computed. Once the unknown coe�cients computed, then numerical
solutions can be obtained from Eq. (14)
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Test Problems

Problem 1.
∂u

∂t
− 1

π2
∂2u

∂x2
= 0, 0 < x < 1, 0 < t,

with initial condition:

u(x, 0) = cosπ(x− 1

2
), 0 ≤ x ≤ 1,

and homogeneous boundary condition:

u(0, t) = u(1, t) = 0, 0 < t.

Comparing results at t = 0.4 to the actual solution
u(x, t) = e−t cosπ(x− 1

2).
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Discussion

The problem 1 has been solved for di�erent values of dt and the error
norms L2 and L∞ have been addressed in Table 1 . From table 1 it is clear
that when we decrease time step size, the error norms decreases. Table 2
shows the comparison of the exact, forward and computed results for
N = 10. It is clear from table 2 that the computed results at di�erent
points are in good agreement with exact solutions as compared to forward
di�erence results. The graphical behaviour of the solution has been
addressed in Figure 1. One can see clearly that exact and approximate
solutions promises well with each other. Figure 2 shows the absolute error
of problem 1.
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Table: Error norms of problem 1 for N = 10 and for di�erent time step size

dt L∞ L2

0.04 5.2439× 10−3 1.1725× 10−2

0.03 3.8946× 10−3 8.7087× 10−3

0.02 2.6514× 10−3 5.9288× 10−3

0.01 1.3338× 10−3 2.9827× 10−3
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Table: Comparison of exact v/s approximate and forward di�erence

x Approximate Exact Forward
0.1 0.207125527752174 0.207140285895210 0.206147397870097
0.2 0.393980990074312 0.394004237375760 0.392115652123291
0.3 0.542272072655695 0.542300308913029 0.539700894316262
0.4 0.637480421658031 0.637512247785462 0.634456452656315
0.5 0.670284855654593 0.670320046035639 0.667106992892330
0.6 0.637473920327625 0.637512247785462 0.634456452656315
0.7 0.542260453086130 0.542300308913029 0.539700894316262
0.8 0.393967324573462 0.394004237375760 0.392115652123291
0.9 0.207114957537685 0.207140285895210 0.206147397870097
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Problem 2.

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) = 0, 0 < x < 1, 0 ≤ t,

with initial condition:

u(x, 0) = sin(πx), 0 ≤ x ≤ 1,

and homogeneous boundary condition:

u(0, t) = u(1, t) = 0, 0 < t.

Comparing results at t = 0.5 to the actual solution u(x, t) = e−π2t sin(πx).
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Discussion

The problem 2 has been solved for di�erent values of dt and the error
norms L2 and L∞ have been addressed in Table 3 . From table 3 it is clear
that when we decrease time step size, the error norms decreases. For
N = 5 the comparison table of proposed scheme and forward di�erence
scheme results with exact solution of this problem is given in table 4. It is
clear from table 4 that the computed results at di�erent points promises
well with exact solutions as compared to forward di�erence results. The
solution pro�le in 1D has been plotted in Figure 3. It is clear that exact
and computed solutions are in good agreement. Figure 4 shows the
absolute error of problem 2.
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Table: Error norms of problem 2 for N = 5 and for di�erent time step size

dt L∞ L2

0.04 9.6852× 10−3 2.1656× 10−2

0.03 7.0092× 10−3 1.5673× 10−2

0.02 3.8766× 10−3 8.6684× 10−3

0.01 1.8471× 10−3 4.1303× 10−3

Table: Comparison of exact v/s approximate and forward di�erence

x Approximate Exact Forward
0.2 0.004120097725974 0.004227282972762 0.004905474506864
0.4 0.006690107236734 0.006839887529993 0.007937224483052
0.6 0.006690107236352 0.006839887529993 0.007937224483052
0.8 0.004120097725243 0.004227282972762 0.004905474506864
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Problem 3.

∂u

∂t
(x, t)− 1

2
x(1− x)

∂2u

∂x2
(x, t) = 0, 0 < x < 1, 0 < t, (19)

Here we considered a variable coe�cient di�usion equation which is given
in Eq. (19) along with initial condition:

u(x, 0) = x(1− x), 0 ≤ x ≤ 1, (20)

and homogeneous boundary condition:

u(0, t) = u(1, t) = 0, 0 < t. (21)

The theoretical solution of this problem is u(x, t) = x(1− x)e−t.
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Discussion

The numerical computation of this problem has been done at T = 0.1 ,
dt = 0.025 and N = 10. In Table 5 we recorded the obtained results. From
table it is obvious that the results of the proposed scheme are better than
forward di�erence scheme.
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Table: Comparison of exact v/s approximate and forward di�erence

x Approximate Exact Forward
0.1 0.0815 0.814 0.900
0.2 0.1450 0.1448 0.1600
0.3 0.1902 0.1900 0.2100
0.4 0.2174 0.2172 0.2400
0.5 0.2265 0.2262 0.2500
0.6 0.2174 0.2172 0.2400
0.7 0.1902 0.1900 0.2100
0.8 0.1450 0.1448 0.1600
0.9 0.0815 0.0814 0.1900
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Conclusion

In this work we discussed a hybridized method based on �nite di�erence
approach and Lucas polynomials. We solved three test problems and the
results have been reported in tabulated data as well as in graphical form.
From computed solutions we observed that the proposed method is suitable
for the di�usion problem with variable and constant coe�cients so one can
apply this method to other test problems like di�usion.
In future we will try to extend proposed method to some non-linear PDE's
and time-fractional PDE's. Also we will discuss the stability and
convergence criteria of the proposed scheme.
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