

WEB

PENETEST

REPORT
Submitted to: Client

Performed by
ZEROX INNOVATION

PVT. LTD

 P a g e 1 | 65

1. TABLE OF CONTENTS

1. TABLE OF CONTENTS ... 1

2. DOCUMENT MANAGEMENT ... 3

2.1: DOCUMENT CONTROL .. 3

2.2: DISCLAIMER ... 3

3. INTRODUCTION ... 4

3.1: OVERVIEW ... 4

3.2: SCOPE OF WORK ... 4

3.3: REPORT STRUCTURE ... 4

4. EXECUTIVE SUMMARY .. 5

4.1: SUMMARY OF BUSINESS RISKS ... 5

4.2: HIGH-LEVEL RECOMMENDATIONS ... 5

5. VULNERABILITY SUMMARY ... 7

5.1: BROAD OVERVIEW OF VULNERABILITIES .. 7

5.2: VULNERABILITIES SUMMARY .. 7

6. DETAILED RESULTS & RECOMMENDATIONS .. 9

6.1: BOOLEAN-BASED SQL INJECTION (UNAUTHENTICATED/AUTHENTICATED) 9

6.2: STORED CROSS-SITE SCRIPTING (XSS) VULNERABILITY ... 27

6.3: OUT-OF-DATE VERSION (APACHE) .. 28

6.4: OUT-OF-DATE VERSION (PHP) ... 29

6.5: OUT-OF-DATE VERSION (MYSQL) .. 30

6.6: DB USER WITH ROOT PRIVILEGES ... 31

6.7: WEBSITE ACCESSIBLE ON IP ADDRESS .. 32

6.8: WEBSITE ACCESSIBLE ON MULTIPLE PORTS ... 33

6.9: COOKIE NOT MARKED AS SECURE .. 34

6.10: COOKIE NOT MARKED AS HTTP-ONLY .. 36

6.11: SSL MISCONFIGURATIONS .. 37

6.12: DIRECTORY LISTING ... 39

6.13: MISSING X-FRAME-OPTIONS HEADER .. 41

6.14: HTTP STRICT TRANSPORT SECURITY (HSTS) NOT IMPLEMENTED..................................... 43

6.15: CROSS-SITE REQUEST FORGERY IN LOGIN FORM ... 45

6.16: TECHNICAL INFORMATION DISCLOSURE .. 47

6.17: OUT-OF-DATE VERSION (JQUERY) ... 52

6.18: OUT-OF-DATE VERSION (JQUERY UI DIALOG) ... 54

6.19: AUTOCOMPLETE IS ENABLED .. 56

6.20: CONTENT SECURITY POLICY (CSP) NOT IMPLEMENTED ... 58

6.21: OPTIONS METHOD ENABLED .. 60

 P a g e 2 | 65

APPENDIX A: WEB PENTEST METHODOLOGY ... 61

A-1: OVERVIEW ... 61

A-2: RECONNAISSANCE... 61

A-3: VULNERABILITIES IDENTIFICATION ... 61

A-4: VULNERABILITIES EXPLOITATION .. 62

A-5: REPORTING ... 62

A-6: POSSIBLE OUTCOME OF WEB APP PENETRATION TESTING ... 63

A-7: PENETRATION TESTING STANDARDS .. 63

APPENDIX B: SEVERITY DEFINITIONS .. 65

 P a g e 3 | 65

2. DOCUMENT MANAGEMENT

2.1: DOCUMENT CONTROL

The following table provides introductory information about this current report which was made

after performing penetration testing of the call.net website and mobile apps :

Document Type Web App Penetration Testing Report

Client Name Call.net

Tested By ZEROX INNOVATION PVT LTD

https://www.zeroxinn.com/

Target https://www.call.net/

Duration 10x Days

Completion Date 18th May 2022

Classification Confidential

Version 1.0

2.2: DISCLAIMER

The report contains confidential information related to the security vulnerabilities and

misconfigurations observed in the tested assets. Accessing this report to unauthorized personnel

may allow them to compromise the organization’s assets, data, or network.

 P a g e 4 | 65

3. INTRODUCTION

3.1: OVERVIEW

This report presents the results of penetration testing activity conducted on the call.net website.

The assessment took 5x days to complete. Testing was mainly based on enumeration,

misconfigurations assessment, and manual identification of vulnerabilities. Further exploitation of

vulnerabilities was performed to demonstrate the validity of vulnerabilities and generate proof of

concepts.

3.2: SCOPE OF WORK

The following assets were tested under the scope of this current engagement:

• https://www.call.net/

3.3: REPORT STRUCTURE

This current executive summary report has been arranged in the following sections:

S/N Report Sections Description

1. Document Management This report section describes details, i.e., report version,

completion timeline, report type, etc.

2. Introduction This section of the report provides an overview of penetration

testing activity.

3. Executive Summary This section of the report provides an overall security profile,

conclusion, and recommendations.

4. Vulnerability Summary This section of the report provides a summary of vulnerabilities

discovered during penetration testing activity.

5. Detailed Results and

Recommendations

This section of the report provides details of vulnerabilities

discovered during penetration testing activity. (web)

6. Web Pentest

Methodology

This section of the report provides the detailed process of web

penetration testing.

7. Severity Definitions This section of the report describes severity levels along with

their impacts.

 P a g e 5 | 65

4. EXECUTIVE SUMMARY

4.1: SUMMARY OF BUSINESS RISKS

It was observed that the tested website is affected by highly critical security vulnerabilities. The

significant vulnerabilities observed on the tested website are SQL injection and cross-site scripting.

The website's current status is such that it is possible to get complete control over the database

and extract usernames, passwords, email addresses, package information, authentication tokens,

OTPs, etc. Then with the obtained credentials, it is possible to log in with every user available on

the tested website. Further, after login, the hacker can do any operation possible with a legitimate

user.

Moreover, with SQLI, it is possible to get OS-level access to the server using remote code execution.

Few samples of the information mentioned above have been collected for evidence. While

analyzing the collected data, it was observed that the database was corrupted with malicious

entries in various tables. It seems that different hackers have already compromised the website

database. With the identified stored XSS vulnerability, it is possible to compromise other

application users and achieve a complete account takeover of every application user.

DO NOT CONSIDER RUNNING ANY BUSINESS ON THE CURRENT STATE OF THE WEBSITE

RUNNING A BUSINESS WILL BE NOTHING EXCEPT A DISASTER

PAUSE ANY BUSINESS ACTIVITY IF ONGOING

CONSIDER ALL WEBSITE-SENSITIVE DATA AS LEAKED

CONSIDER THE WEBSITE HAS BEEN HACKED AND DO IMMEDIATE ACTION TO STOP THE HACK

Multiple security issues ranging from Low to Critical severity levels have been identified on the

tested website. The assessment team has mentioned remediation measures specific to every

vulnerability, which will guide the application developers, network administrators, and security

teams in patching, fixing, or updating the affected assets.

Industry-reputed state-of-the-art tools and manual vulnerability assessment techniques have been

used for penetration testing activity. Then further manual validation techniques have been

adopted for the removal of false positives.

4.2: HIGH-LEVEL RECOMMENDATIONS

Actionable recommendations along with priority have been listed below:

• First, it is suggested to make the website offline and try to fix all the security issues

mentioned in this report. Start with the fixation on SQLI and XSS vulnerabilities.

 P a g e 6 | 65

• It is suggested that compromise assessment must be performed on all application

components, i.e., code, web server, database, and operating system. The reason is that

during testing, it was visible that the database was fully compromised, and it was filled up

with malicious inputs.

• It is suggested to conduct a SAST (static application security testing) on the source code of

the call.net website. All the vulnerabilities in a software product are only identified using a

black box, white box pentest, and source code analysis (SAST).

• The project was accepted with less than 20 hours of time investment. But more than 200

hours have been invested in the in-scope assets. The reason is that numerous

vulnerabilities were constantly identified during the testing process. With 20 hours, it was

impossible to identify and report all the vulnerabilities. Hence, many hours have been

invested to give a quality product to our client and gain client confidence for future

engagements. But it is suggested to conduct a few more rounds of pentest on the in-scope

assets to identify all existing vulnerabilities.

 P a g e 7 | 65

5. VULNERABILITY SUMMARY

5.1: BROAD OVERVIEW OF VULNERABILITIES

The summary of security vulnerabilities discovered during penetration testing activity has been

presented below:

Critical High Medium Low Total

2 4 9 6 21

5.2: VULNERABILITIES SUMMARY

This section of the report provides a quick overview of vulnerabilities observed during penetration

testing activity.

Severity Vulnerabilities Description

Critical BOOLEAN-BASED SQL INJECTION

Critical STORED CROSS-SITE SCRIPTING (XSS) VULNERABILITY

High OUT-OF-DATE VERSION (APACHE)

High OUT-OF-DATE VERSION (PHP)

High OUT-OF-DATE VERSION (MYSQL)

High DB USER WITH ROOT PRIVILEGES

Medium WEBSITE ACCESSIBLE ON IP ADDRESS

Medium WEBSITE ACCESSIBLE ON MULTIPLE PORTS

Medium COOKIE NOT MARKED AS SECURE

Medium COOKIE NOT MARKED AS HTTP-ONLY

2

4

9

6

0

1

2

3

4

5

6

7

8

9

10

Critical High Medium Low

V
u

ln
e

ra
b

ili
ti

es

Risk Level

 P a g e 8 | 65

Medium SSL MISCONFIGURATIONS

Medium DIRECTORY LISTINGS

Medium MISSING X-FRAME-OPTIONS HEADER

Medium HSTS NOT ENABLED

Medium CROSS-SITE REQUEST FORGERY IN LOGIN FORM

Low TECHNICAL INFORMATION DISCLOSURE

Low OUT-OF-DATE VERSION (JQUERY)

Low OUT-OF-DATE VERSION (JQUERY UI DIALOG)

Low AUTOCOMPLETE IS ENABLED

Low CSP NOT IMPLEMENTED

Low OPTIONS METHOD ENABLED

Refer to Sections 6 of this report to explain identified security vulnerabilities, possible impacts, and

recommendations.

 P a g e 9 | 65

6. DETAILED RESULTS & RECOMMENDATIONS

6.1: BOOLEAN-BASED SQL INJECTION (UNAUTHENTICATED/AUTHENTICATED)

Risk Rating Critical

Tools/Tech. Used Manual Vulnerability Assessment

Observation A Boolean-Based SQL Injection was observed in the tested website. In SQLI

vulnerabilities, data input by a user is interpreted as a SQL command rather

than as normal data by the backend database.

It must be noted that pentest engagements are usually time-bound

activities; hence sampling techniques are generally adopted. In this time-

bound engagement, a few vulnerable parameters/injection points have been

identified in the tested website. It was felt from the testing of the website

that maximum user parameters

dealing with the database may be affected by SQLI vulnerabilities. Moreover,

the vulnerable parameters/injection points are available on the tested

website with and without authentication. The unauthenticated SQL injection

is hazardous as no credentials are required to access the database and do

further exploitation.

Plenty of time has been spent validating the identified SQLI vulnerability

using manual techniques and automated tools. The SQLI vulnerability has

been validated using both methods.

Implications This is an extremely common vulnerability, and its successful exploitation

can have critical implications. Further SQLI vulnerability was exploited to

gain access to the database, and attempts have been performed to access

the server OS. The following information has been collected as evidence.

• The database version was identified

• The database user was identified

• The current application database was identified named “Kamailio”

• All application databases were identified

• Application usernames and passwords have been identified

• Garbage/compromised data has been identified in the database

Recommendation The best way to protect your code against SQL injections is by using

parameterized queries (prepared statements). Almost all modern languages

 P a g e 10 | 65

provide built-in libraries for this purpose. Do not create dynamic SQL queries

or SQL queries with string concatenation.

Affected Assets https://call.net/ajax-request

Evidence

MANUAL VALIDATION OF VULNERABLE PARAMETER – continent_code

This section presents the steps taken for the manual validation of SQLI vulnerability. The

vulnerable parameter identified was “Continent_code”. The following figure shows a sample

request without containing any SQLI payload.

The following figure shows that after injecting a vulnerable parameter with a single tick, the

application threw a response with the " null " value. It seems that malicious input has triggered

the execution of SQL command with invalid syntax at the code level.

Plain Payload: 264'

URL Encoded Payload: 264%27

The following figure shows that after injecting a vulnerable parameter with a valid SQLI payload,

the application threw a proper response, indicating that malicious input has triggered the

execution of a valid SQL command at the code level.

Plain Payload: 264' or 1=1 #

URL Encoded payload: 264%27%20or%201=1%20%23

https://call.net/ajax-request

 P a g e 11 | 65

The following figure shows that after injecting a vulnerable parameter with another valid SQLI

payload, the application threw a proper response, indicating that malicious input has triggered

the execution of a valid SQL command at the code level.

Plain payload: 264' or 1=0 #

URL Encoded Payload: 264%27%20or%201=0%20%23

The following figure shows that after injecting a vulnerable parameter with an SQLI payload that

will make a valid SQLI query at the backend, the application threw a proper response, indicating

that malicious input has triggered the execution of a valid SQL command at the code level. Due to

one false condition in the operator (1=0), the overall SQL query will not produce any useful result,

as seen in the following figure.

Plain Payload: 264' and 1=0 #

URL Encoded payload: 264%27%20and%201=0%20%23

Now a true condition will be created with the following SQLI payload, and it is seen that the

application returns useful data.

Plain Payload: 264' and 1=1 #

URL Encoded Payload: 264%27%20and%201=1%20%23

 P a g e 12 | 65

It is possible to execute SQL commands via the vulnerable parameter at this stage. Now the

famous step in SQL injection is to identify the number of columns using the “order by” command

shown in the figures below. The column number was determined to be 1.

Plain Payload: 264' order by 1 #

URL Encoded Payload: 264%27%20order%20by%201%20%23

Plain Payload: 264' order by 2 #

URL Encoded Payload: 264%27%20order%20by%201%20%23

From the above experiment, it was identified that the number of columns is 1. Now trying to read

information from the database using different techniques. Since the injection type is not error-

based, these techniques extracted no data. The steps are as follows:

Plain Payload: 264' union select 1 #

URL Encoded Payload: 264%27%20union%20select%201%20%23

 P a g e 13 | 65

Plain Payload: 264' union select version() #

URL Encoded Payload: 264%27%20union%20select%20version()%20%23

Since the injection type is not error-based, a sleep command is used for the final validation of SQL

injection. It was observed that the application sent a delayed response after injecting the sleep

query in the vulnerable parameter, as shown in the figures below.

Plain Payload: 264' union select sleep(10) #

URL Encoded Payload: 264%27%20union%20select%20sleep(10)%20%23

After validating the identified SQLI vulnerability, sensitive information was extracted from the

database. The steps are listed below.

IDENTIFYING DATABASES VERSION

IDENTIFYING DATABASES USER

 P a g e 14 | 65

IDENTIFYING THE NAME OF THE CURRENT DATABASE

IDENTIFYING THE NAMES OF ALL DATABASES

READING TABLES FROM THE DATABASE KAMAILIO

 P a g e 15 | 65

 P a g e 16 | 65

READING COLUMNS OF TABLE USERS OF DATABASE KAMAILIO

READING DATA FROM THE USERS TABLE OF DATABASE KAMAILIO – EMAIL ADDRESS OF A USER

READING DATA FROM THE USERS TABLE OF DATABASE KAMAILIO – PASSWORD OF A USER

READING DATA FROM THE USERS TABLE OF DATABASE KAMAILIO – USERNAME AND

PASSWORD OF ALL USERS

 P a g e 17 | 65

 P a g e 18 | 65

GARBAGE/COMPROMISED DATA OBSERVED IN THE DATABASE

 P a g e 19 | 65

 P a g e 20 | 65

 P a g e 21 | 65

 P a g e 22 | 65

 P a g e 23 | 65

READING DATA FROM MYSQL.USERS TABLE

 P a g e 24 | 65

A few other vulnerable SQLi injection points have been identified, listed below.

ANOTHER VULNERABLE POINT “packagename (post)” MANUAL VALIDATION

 P a g e 25 | 65

ANOTHER VULNERABLE POINT “packagename (get)” MANUAL VALIDATION

ANOTHER VULNERABLE POINT “req_url” MANUAL VALIDATION

 P a g e 26 | 65

 P a g e 27 | 65

6.2: STORED CROSS-SITE SCRIPTING (XSS) VULNERABILITY

Risk Rating Critical

Tools/Tech. Used Manual Vulnerability Assessment

Observation It was observed that one of the parameters of the tested website is affected

by stored XSS vulnerability. The account “full name” field is vulnerable to XSS.

After inputting XSS payloads in the account name field, the XSS payload will

trigger/execute when the application user views the accounts settings page.

Implications An attacker can exploit this vulnerability to get session tokens (cookies) of

other application users and obtain a complete account takeover.

Recommendation It is recommended to implement sanitization against XSS payloads in the

comments field of the tested website.

Affected Assets https://call.net/ajax-request (parameter: “full name”)

Evidence

The following figure shows a successful XSS payload supplied with the “full name” parameter. This

information will be saved in the database. The XSS payload will trigger/execute once any user visits

or accesses the account settings, as shown in the second and third figures.

 P a g e 28 | 65

6.3: OUT-OF-DATE VERSION (APACHE)

Risk Rating High

Tools/Tech. Used Manual Vulnerability Assessment

Observation It was identified that the tested website is using an out-of-date version of

apache.

Implications Since this is an old version of the software, it may be vulnerable to attacks.

Recommendation Please upgrade your installation of apache to the latest stable version.

Affected Assets https://call.net/

Evidence

The following figures show the version of apache (apache 2.2.15) used by the tested website.

The following figure shows the available exploit of the apache version used by the tested website.

 P a g e 29 | 65

6.4: OUT-OF-DATE VERSION (PHP)

Risk Rating High

Tools/Tech. Used Manual Vulnerability Assessment

Observation It was identified that the tested website is using an out-of-date version of PHP.

Implications Since this is an old version of the software, it may be vulnerable to attacks.

Recommendation Please upgrade your installation of PHP to the latest stable version.

Affected Assets https://call.net/

Evidence

The following figures show the version of PHP (PHP 5.6.40) used by the tested website.

 P a g e 30 | 65

6.5: OUT-OF-DATE VERSION (MYSQL)

Risk Rating High

Tools/Tech. Used Manual Vulnerability Assessment

Observation It was identified that you are using an out-of-date version of MySQL.

Implications Since this is an old version of the software, it may be vulnerable to attacks.

Recommendation Please upgrade your installation of MySQL to the latest stable version.

Affected Assets https://call.net/

Evidence

The following figure shows the database version enumerated from the tested website.

 P a g e 31 | 65

6.6: DB USER WITH ROOT PRIVILEGES

Risk Rating High

Tools/Tech. Used Manual Vulnerability Assessment

Observation It was identified that the tested application was accessing the database with

the root user privileges, which is against the recommended security practices.

Implications If the application accesses the database with the root user, the attacker can

access the database with the root user privileges after compromising the

website.

This same implication happened with the current tested website. An SQLI

vulnerability was identified in the tested application, and then the database

was accessed with the privileges of the root user.

Recommendation The database user provided to the web apps must not be a root privileged

database user.

Affected Assets https://call.net/

Evidence

The following figure shows that the database user available to the tested application has root-level

privileges.

 P a g e 32 | 65

6.7: WEBSITE ACCESSIBLE ON IP ADDRESS

Risk Rating Medium

Tools/Tech. Used Manual Vulnerability Assessment

Observation It is observed that the tested website could be accessed on its IP address.

Implications The websites must only be allowed to access on URL rather than on IP

address. This misconfiguration will result in numerous security issues.

Recommendation Reconfigure the web server of the tested website to allow website access on

URL only. Accessing a website on an IP address must be blocked.

Affected Assets https://call.net

Evidence

The following figure shows that the tested website could be accessed using its IP address.

 P a g e 33 | 65

6.8: WEBSITE ACCESSIBLE ON MULTIPLE PORTS

Risk Rating Medium

Tools/Tech. Used Manual Vulnerability Assessment

Observation It was observed that the tested application is accessible on multiple ports.

Implications Generally, web applications are accessible on only one port, usually port 443.

But the tested application was accessible on multiple ports, which is against

security best practices, and it will increase the attack avenues for the attacker.

Recommendation Remove the application on unnecessary ports.

Affected Assets https://call.net

Evidence

The following figure shows that the tested website could be accessed on port 9294.

 P a g e 34 | 65

6.9: COOKIE NOT MARKED AS SECURE

Risk Rating Medium

Tools/Tech. Used Automate Tools and Manual Validation

Observation A session cookie was not marked as secure and transmitted over HTTPS.

Implications This means the cookie could potentially be stolen by an attacker who can

successfully intercept the traffic following a successful man-in-the-middle

attack.

Recommendation Mark all cookies used within the application as secure.

Affected Assets https://call.net/ (ci_session)

Evidence

The following figure shows that the tested website did not mark the session cookie as secure.

 P a g e 35 | 65

 P a g e 36 | 65

6.10: COOKIE NOT MARKED AS HTTP-ONLY

Risk Rating Medium

Tools/Tech. Used Automate Tools and Manual Validation

Observation A cookie was identified on the tested website, which was not marked as

HTTPOnly. Client-side scripts cannot read HTTPOnly cookies; therefore,

making a cookie as HTTPOnly can provide additional protection against cross-

site scripting attacks.

Implications During a cross-site scripting attack, an attacker might easily access cookies

and hijack the victim’s session.

Recommendation Mark the cookie as HTTPOnly. It will be an extra layer of defense against XSS.

However, this is not a silver bullet and will not protect the system against

cross-site scripting attacks. An attacker can use a tool such as XSS Tunnel to

bypass HTTPOnly protection.

Evidence https://call.net/stripe/validate-user

The following figure shows that the tested website did not mark the PHPSESSID as httponly.

 P a g e 37 | 65

6.11: SSL MISCONFIGURATIONS

Risk Rating Medium

Tools/Tech. Used Automate Tools and Manual Validation

Observation It was observed that the tested website is using TLS v1.0 and TLS v1.1, which

are not recommended. Moreover, weak cipher suites are used with different

supported/available SSL/TLS versions, which are not recommended.

Implications Attackers might decrypt SSL traffic between your server and your visitors.

Recommendation • Configure your webserver to disallow using weak ciphers.

• Disable TLS v1.0 and TlS v1.1.

• Use TLS v1.2 or TLS 1.3 only.

Affected Assets https://call.net/

Evidence

The weak SSL/TLS versions and cipher suites are highlighted in yellow in the figure below.

 P a g e 38 | 65

 P a g e 39 | 65

6.12: DIRECTORY LISTING

Risk Rating Medium

Tools/Tech. Used Automate Tools and Manual Validation

Observation Directory listings were identified from the tested website. The webserver

responded with a list of files located in the target directory.

Implications An attacker can see the files located in the directory and could potentially

access files that disclose sensitive information

Recommendation Configure the webserver to disallow directory listing requests.

Affected Assets https://call.net/assets

Evidence

The following figures show the directory listing on the tested website.

https://call.net/assets

 P a g e 40 | 65

 P a g e 41 | 65

6.13: MISSING X-FRAME-OPTIONS HEADER

Risk Rating Medium

Tools/Tech. Used Automate Tools and Manual Validation

Observation The X-FRAME-OPTION header was found missing from the response headers

of the tested website.

Missing the X-Frame-Options header means that this website could risk a

clickjacking attack. The X-Frame-Options HTTP header field indicates a policy

that specifies whether the browser should render the transmitted resource

within a frame or an iframe. Servers can declare this policy in the header of

their HTTP responses to prevent clickjacking attacks and ensure that their

content is not embedded into other pages or frames.

Implications Clickjacking is when an attacker uses multiple transparent or opaque layers to

trick a user into clicking on a button or link on a framed page when they

intended to click on the top-level page.

Thus, the attacker is “hijacking” clicks meant for their page and routing them

to another page, most likely owned by another application, domain, or both.

With a similar technique, keystrokes can also be hijacked. With a carefully

crafted combination of stylesheets, iframes, and text boxes, a user can be led

to believe they are typing in the password to their email or bank account but

are instead typing into an invisible frame controlled by the attacker.

Recommendation It sends the proper X-Frame-Options in HTTP response headers instructing

the browser not to allow framing from other domains.

• X-Frame-Options: DENY It completely denies being loaded in

frame/iframe.

• X-Frame-Options: SAMEORIGIN It allows when the site which wants

to load has the same origin.

• X-Frame-Options: ALLOW-FROM URL It grants a specific URL to load

itself in an iframe. However, please pay attention to that; not all

browsers support this.

Implement defensive code in the UI to ensure that the current frame is the

most top-level window.

Affected Assets https://call.net/

Evidence

 P a g e 42 | 65

In the following figures, the response header shows the absence of the X-Frame-Options header.

 P a g e 43 | 65

6.14: HTTP STRICT TRANSPORT SECURITY (HSTS) NOT IMPLEMENTED

Risk Rating Medium

Tools/Tech. Used Automate Tools and Manual Validation

Observation Errors detected during parsing of Strict-Transport-Security header. Preload

directive was not present in the HSTS header.

Implications The HSTS Warning and Error may allow attackers to bypass HSTS, effectively

allowing them to read and modify your communication with the website.

Recommendation Ideally, after fixing the errors and warnings, you should consider adding your

domain to the HSTS preload list. It will ensure that browsers automatically

connect your website using HTTPS, actively preventing users from visiting your

site using HTTP. Since this list is hardcoded in users’ browsers, it will enable

HSTS even before they visit your page for the first time, eliminating the need

for Trust On First Use (TOFU) with its associated risks and disadvantages.

Unless you fix the errors and warnings, your website won’t meet the

conditions required to enter the browser’s preload list.

Browser vendors declared:

• Serve a valid certificate

• If you are listening on port 80, redirect all domains from HTTP to

HTTPS on the same host. Serve all subdomains over HTTPS:

o In particular, you must support HTTPS for the www

subdomain if a DNS record for that subdomain exists.

• Serve an HSTS header on the base domain for HTTPS requests:

o The max-age must be at least 31536000 seconds (1 year)

o The includeSubDomains directive must be specified

o The preload directive must be specified

o If you are serving an additional redirect from your HTTPS site,

that redirect must have the HSTS header (rather than the

page it redirects to)

Affected Assets https://rdaapp.jsbl.com

Evidence

In the following figures, the response header shows the absence of the HSTS header.

 P a g e 44 | 65

 P a g e 45 | 65

6.15: CROSS-SITE REQUEST FORGERY IN LOGIN FORM

Risk Rating Medium

Tools/Tech. Used Automate Tools and Manual Validation

Observation A possible Cross-Site Request Forgery was identified in the Login Form of the

tested website.

In a login CSRF attack, the attacker forges a login request to an honest site

using the attacker’s user name and password at that site. If the forgery

succeeds, the honest server responds with a Set-Cookie header that instructs

the browser to mutate its state by storing a session cookie, logging the user

into the honest site as the attacker. This session cookie is used to bind

subsequent requests to the user’s session and hence to the attacker’s

authentication credentials. The attacker can later log into the site with his

legitimate credentials and view private information like activity history that

has been saved in the account.

Implications In this particular case, CSRF affects the login form in which the impact of this

vulnerability is decreased significantly. Unlike normal CSRF vulnerabilities, this

will only allow an attacker to exploit some complex XSS vulnerabilities;

otherwise, it can’t be exploited.

Recommendation Send additional information in each HTTP request that can be used to

determine whether the request came from an authorized source. This

“validation token” should be hard to guess for an attacker who does not

already have access to the user’s account. If a request is missing a validation

token or the token does not match the expected value, the server should

reject the request.

If you are posting form in ajax request, custom HTTP headers can be used to

prevent CSRF because the browser prevents sites from sending custom HTTP

headers to another site but allows sites to send custom HTTP headers to

themselves using XMLHttpRequest.

Affected Assets https://call.net/

Evidence

The request header of the tested website shows that there is no token or any other feature used

by the tested website for the protection against CSRF attacks.

 P a g e 46 | 65

 P a g e 47 | 65

6.16: TECHNICAL INFORMATION DISCLOSURE

Risk Rating Low

Tools/Tech. Used Manual Vulnerability Assessment

Observation 1. Web Server, Programming Language, and Server OS Version

Disclosure. It was observed that the tested application discloses the

following information about the application web server and host

operating system:

a. Apache 2.2.15 (webserver)

b. PHP 5.6.40 (programming language)

c. CentOS

2. Disclosure of Programming Language from URL. It was observed that

the URLs of the tested application are in the format “.PHP”. With this

extension, it is easy to guess that the tested application is developed

in PHP

3. Disclosure of Application Frameworks from Session Cookies. It was

observed that the tested application is using the default framework

cookies, i.e., “__stripe_sid”, “__stripe_mid”, and “ci_session”. All

these cookies are default framework cookies and help get information

about the backend technology used by the application. Moreover, the

default PHP cookie PHPSESSID is also used by the application, which

shows that the application has been developed in PHP.

Implications The disclosure of the information is not a vulnerability, but it is beneficial in

exploiting vulnerabilities identified in the application.

Recommendation 1. Web Server, Programming Language, and Server OS Disclosure. It is

suggested to remove information from the HTTP response headers

(server header, X-Powered-By) or replace them with fake/random

values.

2. Disclosure of Programming Language from URL. It is suggested to

configure web applications without PHP extension.

3. Disclosure of Application Frameworks from Session Cookies. It is

suggested to use random/fake names for session tokens.

Affected Assets https://call.net/

Evidence

 P a g e 48 | 65

1. Web Server, Programming Language, and Server OS Version Disclosure. This information

is disclosed by the tested website in the response headers, as shown in the figure below.

Information disclosure is also observed on accessing different web pages, as shown in the figures

below.

 P a g e 49 | 65

As shown below, the information disclosure was also observed when different requests were

fuzzed with invalid values.

2. Disclosure of Programming Language from URL. It was observed that most web pages of

the tested application were not using PHP extension. However, the PHP extension was

observed on the following URL:

3. Disclosure of Application Frameworks from Session Cookies. The following figures show

the default session cookies used by the application and how these cookies will be used to

get the information about the backend technology or frameworks used by the tested

website.

The following figure shows that it is easy to guess that the tested application uses a stripe

framework by searching the session cookies “__stripe_mid” and “__stripe_sid” from google.

 P a g e 50 | 65

The following figure shows that it is easy to guess that the tested application uses a Codeigniter

framework by searching the session cookie “ci_session” from google.

 P a g e 51 | 65

The following figure shows that it is easy to guess that the tested application has been developed

in PHP due to the default PHPSESSID cookie.

 P a g e 52 | 65

6.17: OUT-OF-DATE VERSION (JQUERY)

Risk Rating Low

Tools/Tech. Used Automate Tools and Manual Validation

Observation The target website used jQuery and detected that it was out of date.

Implications Since this is an old version of the software, it may be vulnerable to attacks.

Recommendation Upgrade your installation of jQuery to the latest stable version.

Reference Info • jQuery Improper Neutralization of Input During Web Page Generation

(‘Cross-site Scripting’) Vulnerability

o jQuery before 3.0.0 is vulnerable to Cross-site Scripting (XSS)

attacks when a cross-domain Ajax request is performed

without the 52datatype option, causing text/javascript

responses to be executed.

o Affected Versions: 1.8.0 to 2.2.4

• jQuery Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting') Vulnerability

o In jQuery versions greater than or equal to 1.0.3 and before

3.5.0, passing HTML containing <option> elements from

untrusted sources - even after sanitizing it - to one of jQuery's

DOM manipulation methods (i.e. .html(), .append(), and

others) may execute untrusted code. This problem is patched

in jQuery 3.5.0.

o Affected Versions: 1.9.0 to 3.4.1

• jQuery Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting') Vulnerability

o In jQuery versions greater than or equal to 1.2 and before

3.5.0, passing HTML from untrusted sources - even after

sanitizing it - to one of jQuery's DOM manipulation methods

(i.e. .html(), .append(), and others) may execute untrusted

code. This problem is patched in jQuery 3.5.0.

o Affected Versions: 1.9.0 to 3.4.1

• JQuery Prototype Pollution Vulnerability

o jQuery before 3.4.0, as used in Drupal, Backdrop CMS, and

other products, mishandles jQuery.extend(true, {}, ...) because

 P a g e 53 | 65

of Object.prototype pollution. An unsanitized source object

contains an enumerable __proto__ property and can extend

the native Object.prototype.

o Affected Versions: 1.0 to 3.3.1

Affected Assets https://call.net/

Evidence

The following figures show the jquery version (1.11) used by the tested website.

 P a g e 54 | 65

6.18: OUT-OF-DATE VERSION (JQUERY UI DIALOG)

Risk Rating Low

Tools/Tech. Used Automate Tools and Manual Validation

Observation It was identified that the target website used jQuery UI Dialog and detected

that it is outdated.

Implications Since this is an old version of the software, it may be vulnerable to attacks.

Recommendation Please upgrade your installation of jQuery UI Dialog to the latest stable

version.

Affected Assets https://call.net/assets/js/jquery-ui.js

Evidence

The following figures show the jquery UI Dialog (1.12.1) used by the tested website.

 P a g e 55 | 65

 P a g e 56 | 65

6.19: AUTOCOMPLETE IS ENABLED

Risk Rating Low

Tools/Tech. Used Automate Tools and Manual Validation

Observation It was detected that Autocomplete is Enabled in one or more of the form

fields, which might contain sensitive information like “username”, “credit

card” or “CVV”.

Implications If the user chooses to save, data entered in these fields will be cached by the

browser. An attacker who can access the victim’s browser could steal this

information. This is especially important if the application is commonly used in

shared computers, such as cyber cafes or airport terminals.

Recommendation 1. Add the attribute autocomplete= “off” to the form tag or to individual

“input” fields. However, since early 2014, major browsers don’t

respect this instruction due to their integrated password management

mechanism and offer users to store passwords internally.

2. Find all instances of inputs that store private data and disable

autocomplete. Fields containing “Credit Card” or “CCV” type data

should not be cached. You can allow the application to cache

usernames and remember passwords; however, this is not

recommended in most cases.

3. After addressing the identified issues, re-scan the application to

ensure all fixes have been applied correctly.

Affected Assets • https://call.net/

• https://call.net/transfer-credit

Evidence

The input form doesn’t have an autocomplete attribute that is otherwise explicitly configured as

enabled, as sown in the following figures.

 P a g e 57 | 65

 P a g e 58 | 65

6.20: CONTENT SECURITY POLICY (CSP) NOT IMPLEMENTED

Risk Rating Low

Tools/Tech. Used Automated Testing and Manual Validation

Observation It was detected that your web application doesn’t implement Content

Security Policy (CSP) as the CSP header is missing from the response.

Implications Content Security Policy (CSP) is an added layer of security that helps detect

and mitigate specific attacks, including Cross-Site Scripting (XSS) and data

injection attacks.

Recommendations It is recommended to implement Content Security Policy (CSP) into your web

application. Configuring Content Security Policy involves adding the Content-

Security-Policy HTTP header to a web page and giving it values to control

resources the user agent can load for that page.

Affected Assets https://call.net/

Evidence

In the following figures, the response header shows the absence of the CSP header.

 P a g e 59 | 65

The issue was further validated, as shown in the figure below.

 P a g e 60 | 65

6.21: OPTIONS METHOD ENABLED

Risk Rating Low

Tools/Tech. Used Automated Testing and Manual Validation

Observation The OPTIONS method was allowed on the tested website, which is helpful in

information gathering or enumeration.

Implications Information disclosed from this page can be used to gain additional

information about the target system.

Recommendations Disable the OPTIONS method in all production systems.

Affected Assets https://call.net/

Evidence

The following figures show that the OPTIONS method was enabled on the tested website.

 P a g e 61 | 65

APPENDIX A: WEB PENTEST METHODOLOGY

A-1: OVERVIEW

A-2: RECONNAISSANCE

Reconnaissance means capturing as much information as possible about the target website. In this

phase, the public-facing presence of the target website is profiled using passive and

active reconnaissance methods.

• Passive is used to gather publicly available information about the target website without

active probing, i.e., search engine recon. This method will not trigger the security protection

layer implemented at the target premises.

• Active gathers information about the target website using active

probing,i.e., application enumeration, fingerprinting, fuzzing, error code analysis, etc. In

addition, this method may generate alerts at the security protection layer of target premises.

A-3: VULNERABILITIES IDENTIFICATION

In this phase, automated and manual methods would identify security vulnerabilities and

misconfigurations of in-scope applications. Sample of test cases performed under this phase are

documented below:

• Deploy Management Testing: Testing the underlying platform and infrastructure

configuration and identifying potential change control weaknesses such as orphaned code or

code backup files.

 P a g e 62 | 65

• Identity Management Testing: Verification is for account provisioning considerations such as

user registration processes or account enumeration.

• Authentication Testing: Testing for authentication-related weaknesses, such as insecure

authentication, default credentials, or password weaknesses.

• Authorization Testing: Testing to validate the security of authorization controls such as

privilege escalation or bypassing authorization.

• Session Management Testing: An evaluation of session-related vulnerabilities such as session

fixation, exposed session variables, and cross-site request forgery.

• Data Validation Testing: In this test case, data validation testing, including cross-site

scripting, parameter tampering, SQL injection, and command injection, will be conducted.

• Testing for Error Handling: It requires testing error handling issues related to security, such

as Error Codes and Stack Traces analysis.

• Testing for Weak Cryptography: Testing to evaluate the effectiveness of encryption-related

protections such as weak SSL ciphers.

• Business Logic Testing: Testing to determine if the flow or architecture of the application can

be manipulated to gain access to sensitive information through flaws in business logic or

application workflows.

• Client-Side Testing: Assessing vulnerabilities that commonly affect the client-side of the

application session, such as JavaScript execution, CSS injection, cross-site flashing, and

clickjacking.

• Password cracking would be attempted on login forms or web pages with HTTP

authentication enabled. In addition, password cracking would be tried on password hashes if

somehow enumerated in different test cases mentioned above.

A-4: VULNERABILITIES EXPLOITATION

Identified security issues (i.e., misconfigurations and vulnerabilities) would be validated in this

phase using different techniques depending on the type of security issues. For example, validation of

some vulnerabilities requires exploitation, resulting in remote code execution (RCE), information

disclosure, etc. In addition, sometimes identified vulnerabilities are chained together for

demonstrating higher security risks.

A-5: REPORTING

Detailed findings, conclusions, and recommendations are documented for client executive

management and the technical support team for perusing remediation measures.

 P a g e 63 | 65

A-6: POSSIBLE OUTCOME OF WEB APP PENETRATION TESTING

The following types of security misconfigurations and vulnerabilities may get identified in

penetration testing activity:

• Security Misconfigurations

• Broken account/authentication

• Broken access control

• Broken session management

• Cross-Site Scripting (XSS) flaws

• Injection of commands/ injections attacks

• Directory traversal/ forceful browsing

• XML External Entities (XXE)

• Insecure Deserialization

• Buffer Overflows

• Components with known vulnerabilities

• Sensitive Data Exposure

• Disclosure of sensitive information in the client code

• Weakness in Cryptographic algorithms (i.e., SSL misconfigurations)

• Insufficient Logging & Monitoring

A-7: PENETRATION TESTING STANDARDS

The following standards are being followed for all categories of penetration testing:

Standards Description

PTES The Penetration Testing Execution Standard (PTES) was created by

some of the brightest minds and definitive experts in the penetration

testing industry. It consists of seven phases of penetration testing used

to perform a practical penetration test in any environment.

OSSTMM v3

The Open-Source Security Testing Methodology Manual, or OSSTMM, is

a peer-reviewed methodology for security testing maintained by the

Institute for Security and Open Methodologies (ISECOM). The manual is

updated every six months to remain relevant to the current state of

security testing.

OWASP  

TOP-10  

The OWASP Top 10 is a standard awareness document for developers

and web application security. It represents a broad consensus about

 P a g e 64 | 65

(web, mobile, API)  the most critical security risks to web applications, APIs, and mobile

applications.

NIST SP 800-115 NIST technical guide to information security testing and assessment.

Web Application

Security Consortium

Threat Classification

(WASC-TC)

The Web Application Security Consortium Threat Classification (WASC-

TC) is a classification of website security threats. This document also

contains descriptions and examples of attacks. Categories are

presented in several ways, called Views:

• Enumeration View – lists attacks and weaknesses that can

compromise the security of a website and its data

• Development Phase View – tells at which stage of the

development life cycle a particular vulnerability can occur

• Taxonomy Cross Reference View – helps map WASC-

TC terminology to terminology used by other similar projects,

including OWASP Top Ten, CWE, and CAPEC

Information Systems

Security Assessment

Framework

The Information Systems Security Assessment Framework is separated

into two parts: technical and managerial. The technical part provides

the most important rules and procedures for creating a good security

assessment process. The administrative side contains general

recommendations on setting up an effective testing process.

Benefits: The Information Systems Security Assessment Framework

helps close the gap between the technical and managerial sides of

security testing and implements necessary controls to handle both

sides efficiently

MITRE ATT&CK

Framework

MITRE ATT&CK® is a globally accessible knowledge base of adversary

tactics and techniques based on real-world observations. The ATT&CK

knowledge base is a foundation for developing specific threat models

and methodologies in the private sector, government, and the

cybersecurity product and service community.

DREAD framework Used for reporting vulnerabilities

• Damage – how bad would an attack be?

• Reproducibility – how easy is it to reproduce the attack?

• Exploitability – how much work is it to launch the attack?

• Affected users – how many people will be impacted?

• Discoverability – how easy is it to discover the threat?

 P a g e 65 | 65

APPENDIX B: SEVERITY DEFINITIONS

A qualitative impact factor (Critical, High, Medium, or Low) has been associated with each

vulnerability. Activity’s severity categorizations are illustrated in the table below:

Severity Definition

Critical

This severity level employs significant financial loss, and damage to a brand,

comprised of data, and needs immediate attention to fix the issue.

High

These issues can pose a significant security threat. The critical impact problems are

typically those that would allow an attacker to gain full administrative access to the

device or lead to confidential information leakage. In addition, the high-level

vulnerability may also cause damage to the brand and business identity through

potential media involvement, exposure, and compromise of data.

Medium
This severity level employs moderate financial impact, possible legal consequences,

and reputational ramifications.

Low

Minimal impact on the business if exploited. Information disclosed has no significant

detrimental value, no repudiation or legal consequence, and minimal to no effects

regarding regulatory or standards compliance. Moreover, the issue would involve

valuable information leakage to an attacker, such as a list of users or version details.

