Lead Generation

By Neha C.

Web development , Lead Generation
India
Contact Seller
$20.00 Cost
14 days Delivery

Description

Looking for leads for your business. You have come at the right profile. I'm a B2B marketer and have been using various channels to generate authentic leads like : LinkedIn Sales Navigator, gmail ads , pay per click and Pay per call.
Linkedin Sales Navigator is used to Search targeted contacts from Linkedin based on your given criteria,to find out their contact details
I'll be researching leads in a specific role, industry, country, city, etc using methods above and will be sharing complete information, namely:
First Name, Last Name, Email, LinkedIn URL, LinkedIn Description, Job Title, Company, Skills, Industry, website, City, LI Company URL.
Bulk emails to the email ids can then be sent to generate interest regarding your services.
The other approach is Keyword based where pay per click and pay per call is used.
All the strategies are adopted after studying your business and its requirement in detail. Best bet... you are just charged on PER LEAD BASIS !

Get in touch now to know more !

What seller need from the Buyer to get started?

Business Category to get started in.

Specification of details required.

Preferred mode of lead generation.

Sales Navigator account details. ( if applicable)

Budget of pay per call activity. ( if applicable)

You'll find all feedbacks here

Other services by Neha C.

Lead Generation
by Neha C.
Lead Generation

Looking for leads for your business. You have come at the right profile. I'm a B2B marketer and have been using various channels t...

$20.00
wordpress websites
by Neha C.
wordpress websites

Looking for a wordpress expert. You have come at the right profile. I not only develop wordpress websites which are stunning to lo...

$12.00
Linkedin Lead Generation
by Neha C.
Linkedin Lead Generation

I've been B2B marketer and have been using LinkedIn Sales Navigator effectively to get tons of targeted leads across various verti...

$32.00

Get The Best Similar Services

Find the best services you need to help you successfully meet your project planning goals and deadline

Articles Related To Bulk Marketing


The importance of extracting information from the web is becoming increasingly loud and clear. Every few weeks, I realize myself in a situation where we need to extract information from the web to create a machine learning model. We have to pull or extract a large amount of information from websites and we would like to do it as quickly as possible. How would we do it without manually going to every web site and getting the data? Web Scraping simply makes this job easier and faster.

Why is web scraping needed?

Web scraping is used to collect large information from websites. But why does someone have to collect such large data from websites? Let’s look at the applications of web scraping: 

  1. Price Comparison: Services such as ParseHub use web scraping to collect data from online shopping websites and use it to compare the prices of products.
  2. Social Media Scraping: Web scraping is used to collect data from Social Media websites such as Twitter to find out what’s trending.
  3. Email address gathering: Many companies that use email as a medium for marketing, use web scraping to collect email ID and then send bulk emails.
  4. Research and Development: Web scraping is used to collect a large set of data (Statistics, General Information, Temperature, etc.) from websites, which are analyzed and used to carry out Surveys or for R&D.
  5. Job listings: Details regarding job openings, interviews are collected from different websites and then listed in one place so that it is easily accessible to the user.

 

Web scraping is an automated method used to extract large amounts of data from websites. The data on the websites are unstructured. Web scraping helps collect these unstructured data and store it in a structured form. There are different ways to scrape websites such as online Services, APIs or writing your own code.

Why Python is best for Web Scraping

Features of Python which makes it more suitable for web scraping:

  1. Ease of Use: Python is simple to code. You do not have to add semi-colons “;” or curly-braces “{}” anywhere. This makes it less messy and easy to use.
  2. Large Collection of Libraries: Python has a huge collection of libraries such as Numpy, Matlplotlib, Pandas etc., which provides methods and services for various purposes. Hence, it is suitable for web scraping and for further manipulation of extracted data.
  3. Dynamically typed: In Python, you don’t have to define datatypes for variables, you can directly use the variables wherever required. This saves time and makes your job faster.
  4. Easily Understandable Syntax: Python syntax is easily understandable mainly because reading a Python code is very similar to reading a statement in English. It is expressive and easily readable, and the indentation used in Python also helps the user to differentiate between different scope/blocks in the code.
  5. Small code, large task: Web scraping is used to save time. But what’s the use if you spend more time writing the code? Well, you don’t have to. In Python, you can write small codes to do large tasks. Hence, you save time even while writing the code.
  6. Community: What if you get stuck while writing the code? You don’t have to worry. Python community has one of the biggest and most active communities, where you can seek help from.

How does web scraping work

To extract data using web scraping with python, you need to follow these basic steps:

  1. Find the URL that you want to scrape
  2. Inspecting the Page
  3. Find the data you want to extract
  4. Write the code
  5. Run the code and extract the data
  6. Store the data in the required format

Example: Scraping a website to get product details

Pre-requisite:

  • Python 2.x or Python 3.x
  • Selenium Library
  • BeautifulSoup Library
  • Pandas Library
  1. We are going scrape online shopping website to extract the Price, Name, and rating of products, go to products URL
  2. The data is usually nested in tags. So, we inspect the page to examine, under which tag the information we would like to scrape is nested. To inspect the page, just right click on the element and click on “Inspect”. When you click on the “Inspect” tab, you will see a “Browser Inspector Box” open.
  3. Let’s extract the Price, Name, and Rating which is nested in the “div” tag respectively.
  4. Write code:

#Let us import all the necessary libraries

from selenium import webdriver

from BeautifulSoup import BeautifulSoup

import pandas as pd

driver = webdriver.Chrome("/usr/lib/chromium-browser/chromedriver")

products=[] #List to store name of the product

prices=[] #List to store price of the product

ratings=[] #List to store rating of the product

driver.get("Product_URL")

content = driver.page_source

soup = BeautifulSoup(content)

for a in soup.findAll('a',href=True, attrs={'class':'.…'}):

name=a.find('div', attrs={'class': '….'})

price=a.find('div', attrs={'class':'….'})

rating=a.find('div', attrs={'class':'….'})

products.append(name.text)

ratings.append(rating.text)

df = pd.DataFrame({'Product Name':products,'Price':prices,'Rating':ratings})

df.to_csv('products.csv', index=False, encoding='utf-8')

 

To run the code, a file name “products.csv” is created and this file contains the extracted data.

What our users are discussing about Bulk Marketing